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We have used the method of high-temperature series expansions to investigate 
the critical point properties of a continuous-spin Ising model a n d  g0:~b4:d 
Euclidean field theory. We have computed through tenth order the high- 
temperature series expansions for the magnetization, susceptibility, second deriv- 
ative of the susceptibility, and the second moment of the spin-spin correlation 
function on eight different lattices. Our analysis of these series is made using 
integral and Pad~ approximants. In three dimensioris we find that hyperscaling 
fails for sufficiently Ising-like systems; the strong coupling limit of g0:~b4:3 
depends on how the ultraviolet cutoff is removed. The level contours of the 
renormalized coupling constant for this model in the go, correlation-length plane 
exhibit a saddle point. If the ultraviolet cutoff is removed before go ~ ~ ,  the 
usual field theory results and the renormalization-group fixed point with hyper- 
scaling is obtained. If the order of these limits is reversed, the Ising model limit 
where hyperscaling fails and the field theory is trivial is obtained. In four 
dimensions, we find that hyperscaling fails completely; go:~4:4 is trivial for all go 
when the ultraviolet cutoff is removed. 

KEY WORDS: Ising ferromagnet; Boson field theory; renormalization 
group; hyperscaling relations; high-temperature series expansions; Pade 
and integral approximants. 

1. I N T R O D U C T I O N  A N D  S U M M A R Y  

In  the  ear ly  1960s, g rea t ly  i m p r o v e d  p e r t u r b a t i o n  series c o m b i n e d  wi th  the  

p o w e r f u l  Pad6  m e t h o d  of  ana lys is  to y ie ld  a c c u r a t e  e s t ima tes  of  the  cr i t ica l  

ind ices  for  the  s p i n - 1 / 2  I s ing  m o d e l  a n d  o t h e r  p r o t o t y p i c a l  mode l s .  T h e s e  
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results and the emergence of scaling theories led to the recognition that 
there were several different classes of relations between the critical indi- 
ces.(~,2) Most of these relations comprise what are now called scaling laws; 
these relations follow from the assumption (or its equivalent) that free 
energies and correlation functions are homogeneous functions in the neigh- 
borhood of a critical point. Results from experiments, exactly soluble 
models, and numerous numerical studies provide strong support for the 
scaling laws. (2) The other class of relations, for which the evidence was then 
the weakest, have become known as hyperscaling laws; they are relations 
between critical indices in which the spatial dimensionality explicitly ap- 
pears. The idea of hyperscaling arose out of the assumption that the 
two-point correlation length of a single homogeneous phase was the only 
important length scale on which critical phenomena should be gauged. (~) 
Alternatives to this "strong" scaling assumption have been developed by 
Stell (3~ and Fisher. (4~ (These "weak" scaling theories allow for the possibil- 
ity that one or more additional lengths, such as the width of the interfacial 
boundary between two coexisting phases, become important in the critical 
region.) The assumption of critical point dominance of the correlation 
length supported various arguments that the details of interaction potentials 
do not play an essential role in determining the critical behavior. Thus it 
was expected that physical systems with the same basic "symmetries ''3 
would have the same set of critical indices--i.e., they would show the same 
universal behavior at the critical point. (5~ The validity of the hyperscaling 
relations in two dimensions has been established for a variety of systems. 
Most notably, it holds for the spin-l/2 Ising model) In three and higher 
dimensions, however, the evidence in support of hyperscaling has not been 
convincing--as evidenced by the many analyses of Ising-model high- 
temperature series expansions that have been reported. (11-!4~ Similarly, the 
idea of universality in its original form has not been confirmed by experi- 
mental or theoretical investigations, although there is strong experimental 
evidence in the case of simple fluids that is consistent with hyperscal- 
ing. (~5'x6) The basic set of "symmetries" (i.e., qualifiers used to define a 
universality class), has been repeatedly enlarged, thereby decreasing the size 
of the associated universality class. 5 

3 We use the word "symmetries" loosely to denote the set of properties that defines a 
universality class. See Ref. 5. 

4 The critical exponents of the two-dimensional Ising model that appear in the hyperscaling 
relations have been calculated in numerous  ways by many  authors; for a survey see Refs. 2 
and 6. The proof by Kadanoff  (7~ depends on a hypothesis shown by Stephensen along 
diagonals, (8) as explained by McCoy and Wu. (9) For a discussion of the two-dimensional 
Ising model field theory see Ref. 10. 

5 See, for instance, model calculations on systems having tricritical and higher order critical 
points.(17) 
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In the early 1970s, powerful calculational techniques developed for 
field theory were applied to the statistical mechanics of the critical 
point, (18'~9) and attention shifted away from the questions of hyperscaling 
and correlation length dominance. The field theory techniques, known as 
renormalization group methods, grew out of the connection between field 
theory and statistical mechanics pointed out by Symanzik (2~ and 
elaborated by Wilson (18) and others. (2L'22~ The renormalization group ap- 
proach has intrinsic to its structure both scaling and hyperscaling relations, 
so that the values of all the critical indices are determined from just two 
indices plus the spatial dimension. The structure of the renormalization 
group methods appears to support the idea of universality. 6 Unfortunately, 
the language of field theory and its precise connection with statistical 
mechanics was not immediately clear; there has been some uncertainty 
concerning the rigorous status of the renormalization group theory of 
critical phenomena. In particular, it has not been made clear whether 
hyperscaling and the critical point dominance of the correlation length are 
consequences of the renormalization group theory or are assumptions that 
have been appended to the theory. 

The field-theoretic approach, in its most basic form, is tied to the 
properties of g0:~4:d Euclidean field theory. The connection between this 
model field theory and a continuous-spin Ising model provides the basis for 
the renormalization group theory of critical phenomena. It is the point of 
view of this paper that the direct calculation of the properties of the 
continuous-spin Ising model, by the method of (convergent, not asymp- 
totic) series expansions, should greatly clarify the status of the renormaliza- 
tion group theory of critical phenomena. Section 2 of this paper illustrates 
clearly the connection between g0:q~4:a Euclidean field theory and a con- 
tinuous-spin Ising model with a spin density distribution given by exp(-  
~os 4 -  As2). We show that if hyperscaling fails, then the conventional 
renormalized coupling constant of the field theory vanishes. We find that 
the number of universality classes for the continuous-spin systems we 
consider is given by the number of values that the renormalized coupling 
constant attains in the strong coupling limit of go:q~4:d, i.e., go ~ m. (See 
Section 3.) In the course of our numerical investigations we believe we have 
developed good numerical evidence on the following points. 

(1) The renormalization group theory of critical phenomena is seen to 
depend on the key  assumption that, within the context of a go:~b4:d field 
theory, the limits go ---) ~ and a --~ 0 commute.  Here go is the bare coupling 
constant and a is the ultraviolet cutoff (lattice spacing). Our calculations 
show that the numerical evidence is consistent with this assumption for 
models in one and two dimensions. In three dimensions this assumption 

6 Reference 18, Sections 10 and 12, and Hohenberg (Ref. 15). 
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fails. There appears to be at least two values for the renormalized coupling 
constant g in the strong coupling limit, depending on how the limits 
g 0 ~  m,a  ~ 0 are taken. For sufficiently Ising-like spin distributions, the 
renormalized coupling constant goes, numerically, to zero. 

(2) A contour plot of g as a function of the sharpness of the spin 
density distribution g0 and the correlation length ( ( ~ l / a )  exhibits a 
saddle point. It is evident that the simple structure assumed in the renor- 
malization group theory of critical phenomena is inadequate to describe the 
full richness of the subject. 

(3) In four dimensions, the renormalized coupling constant as a 
function of the bare coupling constant for fixed (and sufficiently large) 
correlation length is a singly peaked curve. The numerical evidence is 
consistent with the idea that the peak height shrinks to zero inversely 
proportional to the logarithm of the correlation length. The strong coupling 
tail shrinks more rapidly to zero, roughly like ~-0.54_+o.os. Thus, although 
the field theory of this model is trivial, it is not unreasonable to suppose 
that interesting statistical mechanics can result (i.e., these models display 
critical point properties that are distinct from those of the Gaussian model). 

(4) Our numerical studies are in agreement with the rigorous results of 
constructive field theory for one and two dimensions, and those results 
appear to continue to hold up to and including the strong coupling limit. 
For the case of three dimensions, we find that the rigorous results for small 
go extend to all finite go when the ultraviolet cutoff is removed and there is 
a well-defined strong coupling limit (limgo__, ~ lima--,0). In four dimensions, 
the numerical results are consistent with the idea that the removal of the 
ultraviolet cutoff leads to a trivial (i.e., no scattering) field theory. 

We conclude that the renormalization group theory of critical phenom- 
ena, as currently formulated, is in fact the theory of the first maximum of 
the renormalized coupling constant as a function of the bare coupling 
constant. This maximum may (d = 1,2) or may not (d = 3, 4) coincide with 
the spin-l /2 Ising model. 

In Section 2 we set out in detail the mathematical formulation of our 
model and relate it to both the usual statistical mechanical and field theory 
languages. We discuss the strong coupling limit in Section 3. There we trace 
how the key assumption (described above) of the renormalization group 
leads, in the context of our formulation, to some of the usual results of that 
theory. The generation of the high-temperature series expansions for the 
magnetization, susceptibility, second derivative of the susceptibility with 
respect to magnetic field, and correlation length is described in Section 4. 
Subsequently, in Section 5, we obtain the limiting large- and small-g 0 
behavior of the series in addition to other related quantities. [Here go is a 
parameter characterizing the spin-distribution density, defined in Eq. 
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(2.17).] In Section 6, we describe the series in the correlation length, and 
finally, in Section 7, we discuss our numerical results. 

2. DEFINITION OF THE MODEL 

The continuous-spin model which we treat can be thought of in two 
ways. One may consider the model to be a one-component, ferromagnetic 
Ising model in which the spin variables are continuously distributed from 
- m  to + oe. Alternatively, it can be viewed as a lattice cutoff g0:~,4:d 
Euclidean, Boson field theory. To make clear the relationship between 
these two interpretations, we will begin by defining the model within the 
context of field theory and then translate the model to the statistical 
mechanical form which, from a computational point of view, will be the 
one most convenient for our purposes. 

It is usual to think of the Euclidean field theory as defined by the 
generating functional of the Schwinger functions (complete Euclidean 
Green's functions) SN, (23) 

1 f . . . d x  N H ( x l  ) Z ( H )  = ~ dx, " ' '  H(XN)SN(X , . . . .  , XN) (2.1) 
N = 0  

We give the usual formal expression for this generating functional as the 
functional integral 

z ( . ) =  i-'f[de ]exp{-fdx[e(O)-OH]} (2.2) 

where the Lagrangian density ~ is a function of the field variable 0 and the 
integral in the exponent is over d-dimensional Euclidean space. The formal 
constant M is supposed to impose the condition 

Z(0) = 1 (2.3) 

The usual expression for the action in a g0:0a:d field theory is 

2 
2 + mo2:O2(x): + ~ gO:O4(X) : } 

(2.4) 

where m 0 is the bare mass, go the bare coupling constant, and : : denotes 
the Wick ordered product. 

The first step in moving toward the statistical mechanics of an Ising 
system is to replace (2.4) by a finite difference approximation on a finite 
portion (i.e., N points) of a regular space lattice. We therefore replace Eq. 
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(2.2) by 

Z ( H ) = M - l f ;  '''fj~__l_ d ,  jexp - ~,__~l.= {~)~ a 2 

2 1} + m0%~: + T., g~ +/4, , ,  (2.s) 

where M is a new normalization constant, a is the lattice spacing, d the 
spatial dimension, v (c~ a a) the volume per lattice site, q the lattice 
coordination number, the sum over (6)  is the sum over half the nearest 
neighbor sites, and H i is the source, or magnetic field, term at site i. 

If we attempt to calculate the scattering amplitude for this field theory 
as a perturbation expansion about q0 = 0 we find, as is well known, (24) that 
the coefficients in the expansion are dependent upon the lattice spacing a 
and diverge as a ~ 0. These divergences can be removed by following the 
renormalization procedure of Bogolubov. (25) In the case of the g0:*4:d field 
theory this procedure leads to amplitude, mass, and coupling constant 
renormalization. The first two of the renormalizations can be accomplished 
by replacing H i by HiZ 3 1/2 and making the substitutions 

*i = Z~/2q4 (2.6) 

and 

m02 = rn 2 + 8m 2 (2.7) 

Thus, redefining M, we have, using Eqs. (2.5)-(2.7), 

N { V [ 2dZ3 (~i-~'+~) 2 
Z(H)=M-'ffo~''' f,H=,dq"exp- --g~, ---4-- ~,} ~ ~ 

t c12 ( 6..2, �9 "1-m2Z3 1~?- Z3 + ~ gOz2 r Z3 _ _ +  

In Eq. (2.8) we have expressed the normal ordered products : ( , y :  in terms 
of the Boson commutator C = [ , - , ,  + ] and ordinary products of , j  using 
the relation (2~ 

[p/21 /9! 
:(*Y: = ~--o ( -  1)" (/9 _ 2n)l n! 2-~C"(*J)P-2" (2.9) 
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The commutator C is just the sum over the lattice Green's function and is 
given by 

l C = -~ ~ rn 2 + ........ ~ sin2(~rk �9 3a) (2.10) qa 2 ((~} 

where V is the total volume, the summation on k is over the reciprocal 
lattice, and {3 } is again one-half the nearest-neighbor sites. It is easily seen 
that in the limit a -~  0 

fa z-a, d > 2 
lira C cc ] -  ln(am), d = 2 (2.11) 

v--)oo [finite, d < 2 

The renormalization constants Z 3 and 3m 2 are determined by the 
requirements that 

F(2)(p, - p )  = m 2 + 4q72p 2 (2.12) 

for p near zero. Here F(R2)(p, --p) is the propagator defined by 

{ f } N-1 321nZ(H)  . j a ]  (2.13) 
r f ) ( p , - p ) =  v Z 3H03Hi exp[ -2 r r ip  

j = O  H=0 

Before using Eqs. (2.12) and (2.13) to obtain explicit equations for Z 3 and 
&n 2, it is convenient to introduce yet another change of variable. Let 

tPi = oi( 2dZ3v / qKa2) - , /2 (2.14) 

In terms of these new variables a I and K, Z(H)  assumes the form of the 
partition function of a continuous-spin ferromagnetic Ising model 

N 

Z ( / t ) = M - l f _ ~  ' ' '  f j~= l[doiF(oi)]expfK ~. oio,+al (2.15) 
- i , ( ~ }  j 

with a spin distribution density F(o) given by 

F(o) = e x p ( - g 0  o4 - Ao 2 + Ho) (2.16) 

where 

= (qK/4a)(2d + m2a 2 + 3mZa 2 - �89 CaZgo) 

go = goK2q2a4/96dzv 

Hi = Hi( 2dZ3v / q K"2) - , /2  (2.17) 

(Note that we have again redefined M.) The variable K adds an additional 
degree of freedom to the model. We eliminate the additional degree of 
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freedom by imposing the condition I2(0) = 1, where 

I , ( /~)  = f~-~d~176176 
f~_~do g(o) (2.18) 

Thus, Z(/~) depends on the parameters K, g0, and Hi; the other parameter, 
A, is a function of go as determined by the condition 12(0 ) = 1. Figure 1 
shows the function A(~o). We remark that for go = 0, A = �89 and Z(/~) 
defines the Gaussian model(26) ; in the limit ~0 ~ ~ ,  A ~  -2~0 and Z(/1)  
represents the usual spin-�89 Ising model. (27) We may now reexpress Eq. 
(2.13) in terms of the expectation values of the o's: 

[ qKa2N-' i-' F~2)(p,-p) = ~ ~" (Oooj)exp(-2crip'ja) 
j=0 

= 2dZ3 - ' [1  + (2~')2~2a~0 2 + qKa2 x ] (2.19) 

where the magnetic susceptibility X is defined by 
N - I  

X = ~ (~176176  2 (2.20) 
j=0 

and the correlation length ~ is defined in terms of the second moment of 

Fig. 1. 
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Continuous-Spin Ising Model 477 

the spin-spin correlation function: 
N 

~2= 1~2/2d x (2.21) 

Here the angular brackets denote the usual ensemble average and ~ is 
measured relative to the lattice spacing a. Comparing Eqs. (2.12) and (2.19), 
we find that 

m 2 = (2dZ3/qKa2)x-1 (2.22) 

m2~2a 2 =  1 (2.23) 

The selection of a mass in field theory is equivalent to the selection of a 
length scale for the statistical mechanical model. For example, m = ~ -  J 

would select a lattice of unit spacing as is common in statistical mechanical 
applications. A fixed mass, rn = 1, on the other hand, would scale the 
lattice spacing a to zero as ~-+ m when the temperature approaches the 
critical temperature (i.e., K---> Kc). 

Now let us consider the third and final renormalization. A renormal- 
ized coupling constant gn is obtained by rescaling the zero-momentum 
scattering amplitude: 

gR = F(n4)( O, O, O, O) 

N-I 04InZ(H) [ N-1 021nZ(H) 1-4 
= - v 3  E OHoOHjOHkOH, v E OHoOHj (2.24) 

j,k,l= 0 H=O j=0  

This quantity is important from the field theory point of view because if it 
vanishes there is no scattering described by the model--i.e., the model 
represents a generalized free field328) If we reexpress (2.24) in terms of the 
o variable, we get, using Eq. (2.22), 

gR = -- vm4 02X/0 /~2  
X2 (2.25) 

where we define 
N - I  

02X ~ u4( %, oj, %, a,) (2.26) 

Here u 4 is the fourth Ursell function. (29) Equations (2.25) and (2.23) can be 
used to define the dimensionless, renormalized coupling constant g, 

v ~2x/aIr g -= gRm a-4 = aa x2~a (2.27) 



478 Baker and Kincaid 

which is a convenient form because v ia  a is a pure number and the other 
factors in Eq. (2.27) are directly expressible in terms of the expectation 
values of the a's. 

It is clear from the form of Eq. (2.27) why g is important to the theory 
of ferromagnetic Ising models. As we approach the critical point from 
temperatures above the critical temperature (K < Kr with H -- 0) we know 
that(2~ 

x ~ A +  (1 - K / K c ) - ' ,  ~ D +  (1 - K/K~)-"  

thus as K ~  K c, 

32X/3t712,..., - B+ (1 - K/Kc)  -v-2a (2.28) 

v B+ ( 1 - K ~y+dv-2A 
---- a Kc ] (2.29) g~--a-2 A+D+ 

It has been proven rigorously that as K ~  Kc, g remains finite, (3~ which 
implies that 

y + dv ) 2A (2.30) 

Equation (2.30), taken as an equality, is a "hyperscaling relation" between 
the critical exponents y, A, and v and the spatial dimension d. Thus the 
behavior of g as K ~  K~ is a diagnostic of whether this hyperscaling 
relation fails (g  ~ 0) or holds (g  remains finite). 

We may solve Eqs. (2.22), (2.23), and (2.28) to determine how the 
various parameters behave as K-+ K~ with g0 fixed. We obtain 

1 - K  a ~  
qKA + qKA + ( 1-K ) ~ (ma) '7 (2.31) 

2 dD 2+- '7 

v B+ 
g ~  a ---2 a+ Dd+" (mD+ a) ~'" 

where ~/= 2 - y / v  and we have defined the "anomolous dimension of the 
vacuum" w* by the relation 

y + (d - o0*)v = 2A (2.32) 

The actual computations reported in this paper depend on the proper- 
ties of g as a direct function of K (the inverse temperature) and parametri- 
cally as a function of go. The further dependence on H is not studied. 
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3. THE STRONG COUPLING REGION 

In the previous section we saw that the plan of the renormalization 
scheme in field theory is to arrange the parameters of the model and the 
quantities computed from the model so that they are all finite and nonzero 
in the limit where a, the ultraviolet cutoff, goes to zero--that is, K--~ K~. In 
statistical mechanical applications g0 is fixed. This condition means, by Eq. 
(2.17), that go tends to infinity (d < 4) as a ~ 0 (as long as d > 1 so that Kr 
is not infinite). Thus it is the strong coupling region, a--~ 0, g0---~ oc, that 
characterizes the critical point of statistical mechanics. The application of 
renormalization group methods as developed by Wilson to the study of 
critical phenomena is strongly dependent upon the properties of the field 
theory in the strong coupling region. The key assumption of the renormali- 
zation group approach is that all renormalized quantities are continuously 
differentiable in the neighborhood of a = 0, 0 < go < co. In particular, for 
example, g(g0, a) is assumed to be continuous in the quadrant 0 < go < ~ ,  
a/> 0 including the point (m, 0). To illustrate this point we present a brief 
review of those aspects of the Callan-Symanzik equation approach to 
Wilson's renormalization group theory that focus upon the nature of the 
strong coupling region. 

We begin by considering the consequences of the key assumption 
mentioned above. For any fixed, nonzero value of g0, Eq. (2.17) implies 
that the limit a ~ 0 corresponds to go = m, a = 0. Thus, all continuous-spin 
Ising models defined by Eq. (2.15) (of the same dimension) have the same 
value of g, i.e., it is universal. After we have taken the limit a ~ 0, (fixing K 
at Kc), there remains only one parameter left to describe the model; the 
renormalization group choice is to make this parameter g. Since g can be 
expanded in a power series in go, and this series can be formally reverted to 
go as a formal series in g, we can reexpress the various quantities of interest 
as formal series in g instead of go- (Proper rules have been given to perform 
this expansion directly in terms of Feynman diagrams.) This procedure now 
points to the desirability of finding the universal value of g, denoted g*, 
that corresponds to all the statistical mechanical models. We mention that 
the reversion of g(go, O) to go(g,O) depends on Schrader's monotonicity 
hypothesis, (31) g(go,a) is a monotonic increasing function of go, 0 < go 
< ~z for fixed a. If there should be a maximum, then there would 
necessarily be a branch point in the reverted function go(g, a). While in 
principle one can analytically continue around such a branch point to the 
proper Riemann sheet, no practical calculation that we know of has 
contemplated this added complication. 

To find the value of g*, the renormalization group procedure is to 
construct a discriminant function, which can be used directly in the limit 
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a ~ 0, to find g*. The one proposed is 

f l ( g ) = ( d - 4 ) g 0  ~ . . . .  d 

If g ~ g * <  m as go ~ m as assumed (i.e., monotonically), then it 
follows that f i (g*)--0.  From the formal expansion g(go,O) one can di- 
rectly compute fl(g) by formal manipulations; the series can then be 
summed (32'33) and g* sought as the zero of the fi function. 

The critical indices can be computed using the following approach, 
which, by way of example, we apply to the calculation of the index 7. 
Using Eqs. (2.23) and (2.31), we find 

~ = l i m a ( a l n Z 3 )  a- o  --87 (3.2) 

In order to use the field theory methods, we need to "turn" the direction of 
the derivative to the go direction. To do this we write 

Z3( go, a) = Z3(caa-4~,o, a) (3.3) 

with c--96d(v/aa) /K2q21 so that 

+ a( 

(3.4) 
ago 1o 

Thus by the continuous differentiabitity assumed, we have, from Eqs. (3.4) 
and (3.2) 

a In Z3( go, 0) 
lim (d - 4)g 0 - ~/ (3.5) 

go-> o~ a go 

Rewriting this equation in terms of g, using Eq. (3.1), 

a in Z 3 
71 = g->g*lim fl(g) ag (3.6) 

Similar expressions can be developed for other critical exponents.! 19) We 
point out that for d = 2, 3, these differentiability conditions have been 
rigorously proved for sufficiently small go- That is, the field theory is well 
defined by the (asymptotic) perturbation theory. With a lattice cutoff, 
g = g(go,O) + O(a 2) for d = 1,2 and g = g(go, O) + O(a) for d = 3, as can 
be shown by term-by-term calculations in small-g 0 perturbation theory. 

In summary, we see that the cornerstone of the renormalization group 
scheme is the assumption that the perturbation theory (in go) is both correct 
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and complete. We will discuss in a later section how the point (g0 = ~ ,  a 
= 0) is not always a point of joint continuity in go and a, and how the 
turning of the direction of the derivative [see Eqs. (3.2) and (3.6)] is affected 
by this result. 

4. GENERATION OF THE HIGH-TEMPERATURE SERIES 

In this section we describe how we obtained the high-temperature 
series expansions (i.e., expansions in powers of K) of the various quantities 
needed to calculate g. The series were generated using the method of 
Wortis. (34) Our starting point is the partition function given by Eq. (2.15) 
and the series coefficients are found to depend upon the moments In(/4 ) of 
the spin distribution density F given by Eqs. (2.18) and (2.16), respectively. 
Some previous results of this type have been given by Camp and van 
Dyke.(35) 

We will describe briefly the Wortis method in order to put our 
calculations in context. Fundamentally, this method is based on Taylor's 
theorem: 

for Ixl less than the radius of convergence of the series. The idea then is to 
expand the function W(K,/~) defined by 

Z ( / t )  = exp[ W(K, /~) ]  (4.2) 

in a Taylor series. Using Eq. (4.1), we have 

\ |<J aKij 
Here we have rewritten the nearest-neighbor interaction term K~,i.{a)sisi+ a 
by the more general two-spin interaction energy given by ~i<jKijsisj, where 
K 0 --- K if i and j label nearest-neighbor sites and Kij = 0 otherwise. The 
next step is to convert the derivatives a/aKij to equivalent derivatives with 
respect to / t .  This process will leave us with a derivative operator on 
W(0, / t )  that factors into individual site terms and can be explicitly 
evaluated. The simplest such conversion formula is 

aW 02W a W  aW 
aKiJ - OHiO ~ + a/l i a/lj (4.4) 

The complete rule is given by Wortis in terms of the cumulants 

d" M~~ ~ lnI0(h ) (4.5) 
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where I 0 is given by (2.18). The rule is 

( Mf(T) M,~(i)(Hi)]K ] 

Here the sum over $ is the sum over all topologically distinct, unrooted, 
possibly multilined, connected graphs. The product over v i is a product 
over the vertex set of T with m(i) the multiplicity of the ith vertex and/~i  
the magnetic field at that vertex. The function l(T) is the number of lines of 
I-, and My(T) is the free multiplicity per site of T on the edge set defined by 
the partition function Z(H) .  

We mention that the free multiplicity (34) used here differs from the 
more usual weak multiplicity in its lack of the self-avoiding requirement on 
the embeddings of T on the lattice under consideration. For example, the 
free multiplicity of an n-edge, linear chain, or any n-edge tree for that 
matter, is just q", where q is the lattice coordination number: The free 
multiplicity has the important property that if a graph has an articulation 
point, then the free multiplicity for that graph is the product of the free 
multiplicities of the subgraphs formed by cutting the graph at its articula- 
tion point. Capitalizing on this property, Wortis has further reduced the 
combinatorial problem, at the cost of increased algebraic complexity, by 
means of a vertex renormalization procedure. Any graph with one or more 
articulation points can be separated into its component star (multiply 
connected) graphs by cutting it at every articulation point. Conversely, the 
class of all topologically distinct, unrooted, connected graphs can be 
constructed by joining star graphs together; however, care must be taken 
not to generate the same graph more than once. To accomplish this 
construction it is convenient to consider the decoration of a single vertex. 
We need for this task the sum of all one-rooted graphs Gl(i ), where there 
are l edges incident on the root at site i. If we self-consistently assume that 
every vertex in Gl(i ) is already replaced by the sum of all the required 
decorations, then we only need the single-rooted stars to construct the G~(i). 
For example, 

G2(i)  i i i + i 

G3{i} = 0 + A  + O'(K 5) 
I i 

Now we can write the equations for a single decorated vertex with n edges 
attached as 

l = i  " l , m = l  

(4.8) 
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and the equation for the G t is 

o,( i )  = E { 
where the sum over ~- is over all /-valent, singly rooted star graphs. The 
product over t) is over the vertex set of �9 except for the root point. The G t 
depend on the M n and vice versa, so that we must solve Eqs. (4.8) and (4.9) 
self-consistently. Since G l begins as O(Ki), we can begin by replacing the 
M,, by M ~ in Eq. (4.9) and then use those G t to compute the Mn. These 34, 
will be good through at least order K. If they are now substituted into Eq. 
(4.9), new G l good to one higher order in K are produced. Hence, in j 
iterations we can produce M n which are good to the j th  order in K. Given a 
list of one-rooted star graphs, with up to L lines, ordered by root valence, 
together with their symmetry numbers s(~-) and free multiplicities (the 
multiplicities are the same as those of their skeleton, single-line star graphs), 
we can compute from Eqs. (4.8) and (4.9) the expansion of the Mn(i ) to 
order K L. These algebraic manipulations were performed using the 
ALTRAN (36) system on a CDC 7600 computer. The M n were first expressed 
in terms of the M ~ and then, using the usual moment-cumulant relations, 
reexpressed in terms of the In(H ). Here all/-)i are taken as equal to a single 
H. Since Ml(i ) is the magnetization per site in a uniform field/1,  we can 
use it to find the series expansions for the susceptibility X and O2X/OI~I2 by 
direct differentiation. The resulting series are listed in the Appendix for the 
linear chain (LC), plane square (PSQ), triangular (TRI), simple cubic (SC), 
body-centered-cubic (BCC), face-centered-cubic (FCC), hyper-simple-cubic 
(HCS), and hyper-body-centered-cubic (HBCC) lattices. 

In order to assemble the necessary combinatorial data we must start 
with a list of the basic single-line, unrooted star graphs. This list has been 
taken from Baker et a/. (37) except for the ten-line, nine- and eight-vertex 
graphs (cyclotomic numbers c = 2 and c = 3), where the list was not 
complete. We are grateful to M. F. Sykes (38) for the lists of these stars. 
Here there are seven theta graphs (c = 2) and eleven alpha, nine beta, 
fifteen gamma, and five delta graphs (c = 3). In Table I, we list the number 
of stars (39) by number of lines and cyclotomic number (c = 1 + l -  v, 
where v is the number of vertices). We have adapted the method of Baker 
et ai.(37) to count the free multiplicities of these stars on the eight lattices 
mentioned above. These data are reported elsewhere. (4~ 

The next step is to produce the list of multiline stars. We have done 
this by systematically adding extra lines to the single-line stars, and then 
checking to eliminate duplicates by the use of our weak-embedding-graph- 
on-graph-counting program. The number of such multiline stars is given in 
Table II. By adding a root point to the unrooted multiline stars we obtain 
the singly rooted multiline stars. We have added a root in all possible ways 
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Table I. 

Baker and Kincaid 

The Number of Single-Line Stars Having I Lines and Cyclotomic 
Index c 

n 

l 

c 1 2 3 4 5 6 7 8 9 10 Total 

0 1 0 0 0 0 0 0 0 0 0 1 
1 1 1 l 1 1 l l 1 8 
2 1 2 3 4 6 7 23 
3 1 3 9 20 40 73 
4 2 14 50 66 
5 1 12 13 
6 1 1 

Total 1 0 1 1 2 4 7 16 42 111 185 

Table U. The Number of Multiline Stars Having ! Lines and Cyclotomic Index c 

1 

c 1 2 3 4 5 6 7 8 9 10 Total 

0 1 0 0 0 0 0 0 0 0 0 1 
1 1 1 1 1 1 1 1 I 1 9 
2 1 1 2 3 4 5 7 8 31 
3 1 2 6 11 23 40 70 153 
4 1 3 11 33 96 234 378 
5 1 4 22 89 345 461 
6 1 5 38 212 256 
7 1 7 63 71 
8 1 8 9 
9 1 1 

Total 1 1 2 3 6 14 32 90 279 942 1370 

and again used a version of our graph-on-graph-counting program to weed 
out duplicates. The number of such graphs, classified by root valence and 
number of lines, is given in Table III. These graphs and those of Table II 
are described in detail by Kincaid eta/. (4~ This completes our brief 
description of the combinatorial data needed to derive the magnetization, 
X, and (02X/0/~ 2) by the method of Eqs. (4.8) and (4.9) as described above. 
We remark, as is generally true in computations of this sort, that to extend 
this method by one more order would be substantially more work than was 
required to derive the first ten orders. 

The ALTRAN system was also used to calculate the derivatives of X, 
32X/3I~ 2, and ~t 2 with respect to go. Using these derived series and the 
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Table III. The Number of One-Rooted Multillne Stars with ! Lines in the Set of 
Graphs (7,. Such that i Lines are Incident Upon the Root Point 

l 

1 2 3 4 5 6 7 8 9 10 Total 

G 1 1 0 0 0 0 0 0 0 0 0 1 
G 2 1 1 2 4 11 31 104 369 1439 1962 

G 3 1 1 3 9 28 97 371 1468 1978 

G 4 1 2 6 19 68 252 1020 1368 

G 5 1 2 8 30 123 514 678 

G 6 1 3 12 50 217 283 

G 7 1 3 15 70 89 

G 8 1 4 20 25 

G 9 1 4 5 

G10 1 1 
Total l 1 2 4 l0 29 90 315 1185 4753 6390 

( 

relation 

[ Oln(O)//OgO]lz(O) = 1.+4(0)-  1n(0)I4(0 ) 

+ [1.+2(0 ) -- I .(0)][I4(0 ) - 1 6 ( 0 ) ] / [ I 4 ( 0  ) -- 1] (4.10) 

we were able to produce the series required to calculate fl(g), which can be 
expressed as 

f l ( g ) = ( 4 - d ) g  o ~ K l+2K(O~2 /OK)~  ~ 

The series for (OX/O~,o)x, (03X/a~0M~z)K, and (~/z2/~0), c are considerably 
longer than the other series; they are listed in the report by Kincaid et 
aL (4o) 

We have computed the correlation length ~2 from the second moment 
definition [see Eq. (2.21)] in zero magnetic field. Since every God d has at 
least one odd vertex (as each line has two ends), it must vanish by spin 
symmetry a s / t  ~ 0. The same is also true of Mod d. By the definition of ~ 2, 
we must sum over the lattice, the spin-spin correlation function times the 
distance squared between the two spins. According to the rules of Wortis 
for graphs with renormalized vertex functions, the required graphs are 
therefore those with tess than eleven edges and with exactly two odd 
vertices (the two root points). Following Wortis, it is convenient to classify 
all such graphs into those with articulation points (nodes) and those 
without. We will just consider the multiline star graphs with exactly two 
odd vertices. These comprise a subgroup of the multiline stars reported in 
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Fig. 2. 

I I i I J i 

i i i i i 

Doubly rooted, multiline stars with exactly two odd vertices (the root points). These 
stars belong to class A, since the root points are nearest neighbors. 

Table II. The first few are shown in Fig. 2. It is convenient  to further 
classify the graphs as class A, in which the root  points are nearest 
neighbors, and class B, in which they are not. It is to be noted that all the 
graphs in Fig. 2 are in class A. In  Table IV we list the breakdown of such 
graphs. 

Graphs  with articulation points consist only of strings of star graphs 
joined at the odd root points by the conservation of eveness and oddness. 
For  terms through tenth order, the only graphs which may  be repeated are 
those with five edges or less, i.e, just  those shown in Fig. 2. We may  
formally write the sum of all graphs linking points i and j as  (34) 

C(ij) = ~, M,+ ](i)l,x(ij)Mx+ ,(j) 

+ ~ M,+l(i)l,~,(ik)Mx+~,(k)I~(kj)M,+l(j) + . . .  (4.12) 
r 

where I~x(ik ) is the sum of all star graphs (divided by their symmetry  
numbers)  with a root  of valence e at i and valence X at k. More  formally we 
may  rewrite Eq. (4.12) as 

C(/j)  = [ ( 1 -  M I )  - 1 -  1 ] M  (4.13) 

We emphasize at this point  that  the star graphs summed to form I,x(ik ) 
have labeled roots and  so are more  numerous  than the unlabeled stars of 
Table IV. We list the number  of such stars in Table V. If we separate 

Table IV. The Number of Multiline Stars of Class A and Class B with I Lines 
and Exactly Two Odd, Unlabeled Root Points 

l 

1 2 3 4 5 6 7 8 9 10 Total 

A 1 0 1 1 4 5 17 36 117 311 493 
B 0 0 0 0 0 2 4 16 53 199 274 

Total 1 0 1 1 4 7 21 52 170 510 767 
i 
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Table V. The Number of Class A and Class B Multiline Stars with ! Lines and 
Exactly Two Odd, Labeled Root Points 

l 

487 

1 2 3 4 5 6 7 8 9 l0 Total 

A 1 0 l 1 4 6 19 45 142 411 630 
B 0 0 0 0 0 2 5 24 88 350 469 

Total 1 0 1 1 4 8 24 69 230 761 1099 
i i  

explicitly the star graphs into class A and B, we notice that the smallest 
class B graph has six edges and so is not repeated through tenth order. 
Thus, exact through tenth order we may rewrite Eq. (4.13) as 

CQj') = [ ( 1 -  MI "4- MIe)  - ' -  1]M 

= [ ( 1 - - M I A ) - I - - 1 ] M + ( 1 - M I A ) - ' M I B ( 1 - - M I A ) - ' M  (4.14) 

We are now in a position to reduce the contribution of class A alone, 
N - - 1  ~ . 2 

/x ;=  ~ j r~  CA(0j) (4.15) 
j~:O \ ] a  

to a simple calculation. Through tenth order the matrix I A may be taken as 
a five by five parametric matrix labeled by (1,3,5,7,9). Its entries are 
constructed from the sums of powers of K and of products of renormalized 
vertex functions [Eq. (4.8)], as computed in the first part of this section, 
which~are appropriate to the star graphs involved. Now, insofar as summa- 
tion over lattice sites is concerned, since we are using the free multiplicities, 
the free multiplicity divided by the symmetry number of a string of star 
graphs is just the product of the respective free multiplicities divided by the 
symmetry number; we may simply attach this factor to each star graph 
used in the construction of the I A matrix. To obtain the correct contribu- 
tion to 13,2 we define the matrix 

9 

V~= ~ I~,Mx+~, (4.16) 
)t = 1 ,odd 

for class A and the vectors 

M2 

M 4  

m = M 6 , 

M 8  

Ml0 

g l ,  1 

V3,1 

Vl = V5,1 

V7,1 

V9,1 

v/+ 1 = Vv i (4.17) 
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in terms of the renormalized functions M n. Then 

I~ = ~ cim" vi (4.18) 
i = 1  

follows by a short calculation, where ci is the mean square length of an 
n-step random walk on the lattice of interest. Following Domb, (41) we can 
compute that 

cj =jqJ (4.19) 

where q is the lattice coordination number. Again the necessary algebra for 
the contributions of class A to /~2 has been done using the ALTR_aN 
system.(36) 

To obtain the contributions from a graph of class B, we must first 
compute directly the ~jri] for i and j the two, odd-valence roots for those 
graphs of class B. To include the class A pre- and postfactors determined 
from Eq. (4.14), we make use of the following observation. If we add a 
single line jk to si tej  (a root) of any fixed configuration of a graph G on a 
lattice, then 

]~ (rij + rjk) z = ~]  (rij) 2 + 2 ~] rii. rjk + ~ (rjk) 2 
k k k k 

= q(r~j)2+ 0 + qa 2 

= q[ (r,i) 2 + 1 ] (4.20) 

where the zero follows by lattice symmetry, q is again the lattice coordina- 
tion number, and a is the lattice spacing, which for present purposes can be 
taken as unity. Now, if we sum (4.20) over all configurations of G we 
obtain 

E ~] (r|j + rik)2 = q[c a + My(G)] (4.21) 
G k 

where 

c~ = ~2 (rjj) 2 (4.22) 
G 

and ~ G is the sum over the free embeddings of G on the lattice. This 
calculation is easily extended to add an arbitrary number of class A 
decorations (in a string) to one or both roots of the class B graph. The 
result, for the addition of n class A graphs ~'/, is 

i=, s,(zi) lea + nMT(G)] (4.23) 

where 1 and 2 are the two odd vertices of the resultant string and st(T/) is 
the symmetry number of ~'i with its two roots labeled. 
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Since, through tenth order, only 13 decorations are possible on B 
graphs with six edges (for graphs with seven edges only six, for graphs with 
eight edges only three, for graphs with nine edges only two, and, of course, 
none for graphs with ten edges), there are a total of 654 separate contribu- 
tions from the class B graphs to be obtained (see Table V), and the only 
additional combinatorial information needed is the c a for the class B 
graphs. 

All the methods and data discussed in this section are fully reported 
elsewhere. (4~ The zero-field series for X, ~2X/~I~2, and/z 2 are given in the 
Appendix. 

Finally, we report here the new terms which we have added to the 
known sp in - l / 2  Ising model series. We have added for il2 (~- 2dx~ 2) on the 
triangular lattice 7 

+ 5765546236416K9/9! + 271060330512384Kl~ (4.24) 

We have added for the 02X/0/I  2 series the terms 

-298834578777071616K9/9!-39510128291537117184K1~ (4.25) 

on the FCC lattice, (43) and 

- 601493660302278656K 10/10! (4.26) 

on the HSC lattice (this term agrees with the new results of Gaunt  et al. ~12~) 
Finally, we have added the entire series for the HBCC lattice: 

- 2 - 128K - 9792K2/2! - 886784K3/3! 

- 92722944K4/4! - 11014965248K5/5! 

- 1465369976832K6/6! 

- 215937597784064K7//7! (4.27) 

- 34916329300783104K 8/8! 

- 6147843514432913408K9/9! 

- 1170908043876450435072K 10/10! �9 �9 �9 

5. LARGE- AND SMALL-So BEHAVIOR 

Some aspects of the large- and small-g o behavior of various quantities 
can be obtained without extensive numerical calculations. We begin this 
section by first considering how the moments In(0 ) and A(go) depend upon 
go; we then go on to discuss the behavior of X, 02X/0/t2, (2, g, and/3(g) .  

In order to use the series derived in the previous section and tabulated 

7 The coefficient of K l~ in Eq. (4.24) is not identical to that given by Moore. O2) 
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in the Appendix, it is necessary to evaluate with high precision the moment 
integrals 1,(0) defined by Eq. (2.18). The direct numerical evaluation of 
these integrals presents no problem as long as g0 is not too large. In this 
latter region, however, it is desirable to use an expansion in powers of ~o 1 
to obtain the results. Before we discuss this expansion we will point out a 
few simple properties of these moment integrals. First let 

so that 

J. = ~o~176 x 2" exp( - go x4 -- Ax 2) (5.1) 

12o(o) = Jn/Jo (5.2) 

If we integrate by parts we find, using Eq. (5.1), that 

�9 In = 4g, oJ,+2/(2n+ 1) + 2AJ,+ 1/(2n + 1), n > - 1/2 (5.3) 

Thus we obtain the recursion relation 

R,+ 1 --- -A ' / (2g0)  + (2n + 1)/(4goR,) (5.4) 

where R, = .In+ j J , .  If A < 0, then (5.4) can be used to recur upward in n, 
starting from A(go) and R o-- 1. If, on the other hand, A > 0, then 
cancellation can occur between the terms on the right-hand side of Eq. 
(5.4). This cancellation can be quite significant as g0 ~ 0. Alternatively, we 
can rewrite Eq. (5.4) as 

R, = (2n + 1) / (2A + 4~0R,+,) (5.5) 

which is quite stable for downward recursion in n when A > 0. If one starts 
with the asymptotic guess 

R,~Max[(n/ (2~o))  '/z, (2n + 1)/(2_A)] (5.6) 

for large n and the result that Ro(R,) is monotonic increasing or decreasing 
as n is even or odd, one can rapidly obtain from R 0 = 1 and .4(go) the set 
of R, from Eq. (5.6) to the desired accuracy by a set of successive 
approximations to R . . . .  , where nma x is the largest value of n required. Since 

I : , (0)  = ~ Rj (5.7) 
j=0 

this analysis reduces the numerical problem to the evaluation of-~(g0), plus 
some other well-defined calculations. 

To obtain A(g0) we first discuss the problem of expansions near g0 = 0 
and ~ .  We follow the analysis of Wehner and Baeriswyl (44) of the function 

z ( p )  ~ f ay exp( - 2py z - )2 4) (5.8) 

First, however, we remark that one can easily solve for the crossover value 
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of g0 from R 0 = 1 and Eq. (5.1) as 

~o(A = 0) = I I ' ( 3 / 4 ) / F ( 1 / 4 )  ] 2 -  0.1142366452 (5.9) 

Now in the range /~ > 0, we can use the change of variable ~o x4-- 74, 
which implies that p ~ + oc as g0 ~ 0. Wehner and Baeriswyl give in this 
case the result 

Z(p) = (~r/2p) I/2 2F0(1/4, 3/4;  - t/p 2) (5.10) 

where 2F0 is a confluent hypergeometric function whose expansion is only 
asymptotic. This result leads directly to the equation 

=2F0(5/4,  7/4;  - 4 ~ 0 / A 2 ) / [ 2  2Fo(1/4, 3/4;  - 4 ~ 0 / A 2 ) ]  (5.11) 

which can be used to solve for the series expansion of A(g0) 

.~ = 1 /2  - 6~0 + 48~ 2 + O ( ~  3) (5.12) 

In the case A < 0 we see that the corresponding limit is p ~ - m. Here 
Wehner and Baeriswyl give 

Z(p) = (Tr/- p)l/2 exp(p2) 2Fo(1/4,3/4; 1/p 2) (5.13) 

Again, this result leads to an equation 

= _ 2~0 + ~0/.~ 

+ 3 ( ~ / ~ 3 )  2F0(5/4, 7/4;  4~0//~ 2)/2Fo(1/4, 3/4;  4~o/A 2) (5.14) 

which can be used to solve for the series expansion of A(g0) in powers of 
~o 1. We find 

= -2~0  - 1/2 - ( 1 / 4 ) ~ o  I - ( 7 /16 )~o  2 

- (83/64) ~0 3 -  (1357/256)~o 4 

- (27933/1024) ~o 5 - (688971/4096) ~o 6 

- (19746759/16384) ~o 7 + O ( ~ o  s) (5.15) 

As a practical matter we have in fact used the expansions (5.15) for A ~ when 
go is near oc and used an accelerated binary search procedure on t]ae 
integral definition otherwise. Once a reliable value of A is obtained the 
computation of the moments is not hard using Eqs. (5.4), (5.5), and (5.7); 
we have, however, verified all values of the moments by direct integration 
except for go very near ~ .  

It is interesting to consider as well the expansions of the moments 
12, (0) in powers of g0 and go 1. First, for small ~ we can compute using Eq. 
(5.12) that 

12,(0) = 1 . 3 . 5 . . . ( 2 n -  I ) [ 1 - 4 n ( n -  1)~0] + O(g02) (5.16) 
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From Eqs. (5.16) and (3.5) we compute that 

M~ = 1 .0 ,  M~ = - 4 !  #o + 0 ( #  2) 

i ~  = O(#2) ,  n /> 3 (5.17) 

Hence in the high-temperature expansions, to compute a thermodynamic 
quantity to order #0 we can ignore all vertices at which more than four lines 
meet, including in our count the field derivatives as lines. For example, we 
show in Fig. 3 the topologically distinct graphs which contribute to 
~2X/~I42 through order K 4 and #0. It is not difficult from considerations of 
this type and Eq. (3.20) to deduce 

X = 1/(1 - qK) + 0(#o), 42 = qK/[2d(1  - qK)] + 0(#o) 

(32X/3/4 2) = - 4 !  #0/(1 - qK)4+ O(#~) (5.18) 

By combining Eqs. (2.17), (2.22), and (5.18) we may rewrite Eq. (2.25) as 

gR = go + O(g02) (5.19) 

independent of K or lattice. This formula is in line with the idea that gR is a 
renormalized version of go. 

To consider the expansion in powers of #o ~ we return to the recursion 
formulas for the moments and their ratios. (See Caginalp, Constantinescu, 
and Bender et al.(27) for different approaches.) Using Eqs. (5.4), (5.15), and 
R 0 = 1, we deduce that 

R n +  1 = 1 dr (n + 1)/2#0 + O(#  -2) (5.20) 

SO that 

I2n(0) = 1 + n(n -- 1)/4#0 + O(#o -2) (5.21) 

It is not difficult to extend these series to higher orders in #o ~. Plainly, by 
virtue of the fact that the coefficients of every power of K in the high- 
temperature series listed in the Appendix is a polynomial in the I2,(0), it 
follows that algebraic substitution of Eq. (5.21) into these series leads to the 
spin-l /2 Ising model term plus correction terms containing powers of #o 1. 

Fig. 3. 

4 3 I 2 1 I 
. . . . .  A + A ,  + 

3 1 1 1 
3 

1 1 1 2 

�9 X + > r  .... 
1 I I 1 1 1 2 I 

The topologically distinct graphs that contribute to 32X/Ol~ 2 through order K 4 and 

~o. 
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Since the high-temperature series are convergent for all temperatures above 
some temperature [/> Tc(~0)], we can use analytic continuation to extend 
the following result to all T > Tc for the sp in- l /2  Ising model. A direct 
analysis of Eq. (3.11) shows that term by term 

lim fl(g,  T > T~) cc lim ~o I = 0 (5.22) 
~o--' ~r ~o~ oo 

Thus the fl function necessarily goes smoothly to zero for any fixed 
correlation length as the bare coupling constant go goes to infinity. Thus 

fl(g0 = ~176 2) ~- 0 (5.23) 

This result is consistent with the idea that go = ~ corresponds to the 
renormalization-group fixed point [ f l ( g * ) =  0] and the idea that the ap- 
proach as ~ 2_~ co is a smooth one. However, this result certainly does not 
preclude the possibility that Schrader monotonicity fails and that this zero 
of the fi function is not the renormalization group zero. Clearly, if 
Og/~(~,o 1) < 0 near 42 = oo, then Schrader monotonicity will have had to 
have failed. Thus a study of the possibility of a change of sign of the first 
expansion coefficient of g in powers of ~o I can reveal the failure of 
Schrader monotonicity in a way that is likely to be numerically more 
satisfactory than analyzing the asymptotic behavior at the critical point. 

We remark that Eq. (5.23) shows that the heuristic underpinnings of 
efforts to "turn" the direction of the derivatives, such as that of Nickel and 
Sharp, (13) need more careful discussion since their analogous function is 
manifestly not identically zero for the sp in- l /2  Ising model as is the usual 
fi function. 

6, THE CORRELATION-LENGTH SERIES 

In order to analyze effectively the series data that we have derived it is 
desirable to utilize any exact information that is available. In particular, 
exact knowledge of the critical point location is of great benefit in the study 
of critical indices. In general we do not have such exact knowledge of the 
critical temperature for the models we are studying, but we do, of course, 
for the correlation length: at the critical point the correlation length ~ is 
infinite. Since the correlation length series begins 

~2(K) = (q/2d)K + O(K 2) (6.1) 

and ~2(K) appears to be a monotonic function between K = 0 and K = Kc, 
it is possible, for a fixed value of g0, to revert the series ~2(K) to give 

oo 

K = ~] t,~ 2' (6.2) 
i = l  
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This series can then be substituted into x(K) and (()2X./Olt2)(K) to re- 
express these series as power series in (2. 

A further technical device is to transform the variable ~2 so that the 
critical point ~2= oo is mapped into a finite point. This mapping is 
conveniently accomplished by the Euler transformation 

x = A~2/(1 + A~ 2) (6.3) 

Clearly, when ~ 2 __) ~ ,  X --> 1. This transformation has a parameter A at our 
disposal that determines the point (~2= _ A - I )  in the ~2 plane that is 
mapped into ~ in the x plane. In order to choose A in the most helpful 
manner, we have analyzed the singularity structure of g [Eq. (2.25)] in the 
~2 plane by means of dlog Pad6 approximants. (45) The [L/M] Pad6 
approximant to a function f(x) is 

[ L / M  1 = PL(X)/ Qm(X) (6.4) 

where PL and QM are polynomials of degrees L and M, respectively. The 
coefficients are determined by the equations 

QM(x)f(x) - PL(X) = O(xL+M+'), QM(O) = 1.0 (6.5) 

By their nature they approximate well a polar singularity and by clustering 
poles and zeros they can approximate the behavior near more complex 
types of singularities. If f (x )  has a singularity of the form (x - x0) -+, then 
the logarithmic derivative of f h a s  a simple pole at x = x 0 with residue - ~. 
Consequently, the dlog Pad6 approximants form a useful tool to survey the 
complex plane for singularities. In particular, we note that the [ M -  2/M] 
approximants to d(lnf)/dx are invariant under the transformation on f 
defined by Eq. (6.3). As a result of this survey we find that for A = 2(d + 1) 
the transformation moves ~ 2=  oo to x = 1 and generally moves all the 
other singularities outside the unit circle, which is a desirable manipulation 
for methods of analysis for series data that are not completely invariant 
under such transformations. 

Once the series for 
02 X 

- v ~ (~_ 2(x)) (6.6) 
g =  

has been produced, the next step is to analyze its behavior in the neighbor- 
hood of x = 1. We begin by investigating the possibility of a confluence of 
singularities. Our method of analysis is due to Baker and Hunter. (46) 
Suppose that 

f(x) ~ ~, A,(1 - x) ~", % < %+, (6.7) 
n=l 
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If x = 1 - e-Y, then from 

w(y) = f ( 1  - e -y)  = 2 Wm.y m (6.8) 
m = 0  

we can form the auxiliary function 

An (6.9) W(y) = ~ w~(m! )y~= ~ I -any 
m = 0  n = l  

Clearly, Pad6 approximants to W(y) reveal the amplitudes and index of 
such confluent singularities. 

We have performed this type of analysis on the function Q(x) defined 
by 

Q(x) = (O2x/OIt2)/x2 (6.10) 

with X given by Eq. (6.3). For small g0 (~< 10-3), Gaussian model behavior 
dominates on all lattices; we find that 

Q(x) (i-Q~ [I + Q,(I-x)+ . . .  ] (6.11) 

with p = 2 (i.e., only "analytic" corrections are present). On the one- and 
four-dimensional lattices, Q(x) maintains the structure shown in Eq. (6.11) 
except that the index p = 2, for g0 near zero, decreases to approximately 0.5 
and 1.7, respectively, in the Ising limit g0 = ~ .  The large-g 0 behavior of 
Q(x) on the two- and three-dimensional lattices also takes the form of Eq. 
(6.11); however, when ~0~0.1 the possibility of a significant confluence 
cannot be ruled out. The Pad6 analysis did not appear to be stable in the 
neighborhood of g0 = 0.1, so that we do not have a clear picture of the 
confluent structure there. We conclude from our analysis that there is no 
troublesome confluence near the Ising limit and we will proceed with our 
series evaluation by assuming that there is only one dominant singularity at 
x = l .  

Having checked for possible confluent singularities, we finally come to 
the numerical aspects of this work, i.e., the calculation of g(~o,~2). The 
main technique we shall use is the integral approximant method. (47,48) In 
this method a set of three polynomials is determined from 

QM(x)(df/dx) + PL(x)f(x) + RN(X ) = O(x z"+M+u+2) (6.12) 

and the [N/L; M] integral approximant is determined by integrating Eq. 
(6.12) with the right-hand side set equal to zero. With some exceptions (47) 
this solution has the structure 

[ N/L;  M] = A (x)(x - xi)-v'+ B(x) (6.13) 
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near the roots x i of QM (x). The functions A and B are regular near the x i. 
Solutions of this nature allow us to compute an accurate approximation to 
4 dg near x = 1 which reproduces the expected range of behavior near x = 1. 
The imposition of the condition that there be a singularity at x = 1 is easily 
accomplished by the addition of a linear equation between the polynomial 
coefficients 

QM(1) = 0 (6.14) 

The description of the results of the analysis of our data by this method is 
given in the next section. 

The bare coupling constant go defined by Eq. (2,17) is calculated using 
values of K(4 2) obtained from the [5/5] Pad6 to the series given in Eq. 
(6.2). This procedure is straightforward and fast from a computational 
point of view, but we do not expect that this is the most accurate method 
for obtaining estimates of K in the limit 4 2 ~  ~ ,  i.e., Kc. (Experience on 
other models suggests that Kc is most accurately obtained from an analysis 
of the susceptibility series.) We emphasize, however, that the possible errors 
in our estimates of go will not have any significant effect on the analysis of 
g(go, 42) that follows. 

7. THE RENORMALIZED COUPLING CONSTANT 

In this section we present our numerical analysis of the dependence of 
g on go, go, and ~ 2. In previous sections we have described the methods by 
which series for g and go in terms of 4 2 are generated. The coefficients of 
these series are determined by a choice of the parameter go- For any given 
lattice a table of g and go for various choices of go and 4 2 can be 
constructed. The study of this table, for the eight lattices we consider, is 
given below. The strong coupling region go ~ o0, 4 2 ~  ~ is of special 
interest (see Section 3) and we note that in this limit it is more illuminating 
to study the dependence of g on go instead of go- We choose go as our 
important variable in the strong coupling limit rather than the custom- 
ary (49) choice of go~ d-4 because we have direct calculational control over 
g0 and we bypass the problem of having to obtain precise values for 

K(go,~2). 
We note that lattices of the same dimensionality lead to quite similar 

estimates of g and go. The apparent errors (defined below) in the calculated 
values of g, however, seem to vary considerably from lattice to lattice (with 
g0 and 4 2 fixed). The body-centered cubic family of lattices (LC, PSQ, 
BCC, and HBCC) was found to give the best results. The approximants for 
g on the triangular lattice exhibit so many interfering singularities that we 
were unable to obtain any meaningful estimates for g. 
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The values of g(g0, ~ 2) cited here represent the simple average value of 
g obtained from those integral approximants [N/L; M], where N + L + 
M + 1 = 10 (N, L, M >/ 1), that have no singularities in the closed interval 
- 0 . 5  ~< x ~< 1.1 except the expected singularity at x = 1. [Recall x 
= A~2/(1 + A~2),A = 2(d + 1).] The apparent error assigned to this aver- 
age value of g was obtained using the method of Hunter and Baker. (4s) In 
our case this method is a simple one: let g~ and g/' be the smallest and 
largest values of g obtained from the integral approximants for which 
N + L + M + 1 = p; the apparent error is max]{ g~ or g~'} - ( g~0 or g~'0}l. 

Many of the approximants used to calculate g for two- and three- 
dimensional lattices were often flawed in the sense that they had additional 
singularities within the interval [0.5, 1.1 ]. The presence of these singularities 
was a problem for values of g0 ~< 0.5. The region around g0 = 0.1, where the 
spin density F changes from Gaussian-like to Ising-like, was especially 
troublesome. We cannot explain conclusively why the approximants are so 
unstable in this region. However, one obvious possibility is that our series 
do not extend to high enough order in ~ 2 to adequately represent g for large 
~2 when ~0~<0.5; another possibility is that there is a confluence of 
singularities in the region around g0 -- 0.1. The problems described above 
were not evident on the four-dimensional lattices. 

In these troublesome regions of large apparent error, we find that 
g ~ oe as ~ 2 ~  oe for fixed g0. This behavior implies a violation of Eq. 
(2.30). Therefore, in those cases where this type of spurious behavior is 
obtained, we have substituted an unproven, but compelling, procedure for 
estimating g; it is based on our observation that for the small values of go in 
all cases where very stable approximants to g are obtained, g(~2) is a 
monotonic decreasing function for fixed go: 

For g0 ~< 0.7, g(~2) is a monotonic decreasing function for fixed 
go. When we observe that g(~2)begins to increase for ~2 > ~2 then 
we set g(~2) = g(~2). In this way we can obtain upper bounds for (7.1) 
the curves g(go) or g(g0) in the limit ~ 2 ~  m. Curves obtained in 
this manner are drawn with a dashed line. 

7.1. d = l  (LC) 

In Figs. 4 and 5 we have drawn g as a function of go and g0 for several 
values of ~ 2. The curves show that g is a monotonic increasing function of 
go and go, as expected from the work of Isaacson (5~ and Marehesin. (51) 
The thick curve represents our estimate of the ( 2 ~  oe limit. This limiting 
curve is in agreement with the numerical calculations of Marchesin. (51) It is 
clear from Fig. 4 that g(~2) for fixed go is monotonic decreasing. We also 
note that the [2/2] Pad6 approximant to don  Q)/dx  appears to be exact 
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Fig. 4. The renormalized coupling constant  g as a function of the bare coupling constant go 
for several values of the correlation length ~ on the linear chain lattice. The thick curve 
represents our estimate of g(go) in the limit ~2_~ ~ .  
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Fig. 5. The renormalized coupling constant g as a function of go for several values of the 
correlation length ~ on the linear chain lattice. The thick curve represents our estimate of g(go) 
in the limit ~ 2 ~  oo. 
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when go = ~ .  [Q is defined in Eq. (6.10).] We find that g(go = ~ 2 = re) 
= 6.0. 8 

7.2. d=2(PSO) 

Here, as for the case d --- 1, g(go) and g(g0) with ~2 fixed are smooth, 
monotonic increasing functions of go and go, respectively. (See Figs. 6 and 
7.) For large go and ~, the curve becomes flat [i.e., (3g/Ogo)~2-->O as 
go,~2-~oe]. This behavior is more easily indentified when g is plotted 
against g0 as in Fig. 7. In the parlance of the renormalization group and 
field theory methods, the strong coupling limit go ~ oc commutes with the 
limit ~ 2 ~  oe; this double limit represents a fixed point of the field the- 
ory. (53) Our estimate for the fixed point coupling constant g* is 14.5 ___ 0.2 
(PSQ); it is consistent with the calculations of Baker (11) and Baker et aL (32) 

A unique value of g* indicates that all continuous-spin models, of the 
type defined by Eqs. (2.15) and (2.16), have critical point properties that are 
described by a single field theory with renormalized coupling constant g*. 

s Bender eta/. (52) have shown that 6.0 is in fact the exact result. 

2 4 [ - o [  I I 7 I I r I I J .._j 

i 

0 0.2 84 0 6 0.8 10 
"6o - ~o/(240 + go) 

Fig. 6. The renormalized coupling constant g as a function of the bare coupling constant go 
for several values of the correlation length ( on the plane square lattice. The thick curve 
represents our estimate of g(go) in the limit ~2 ~ oe. 
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Fig. 7. The renormalized coupling constant g as a function of go for several values of the 
correlation length ~ on the plane square lattice. The thick curve represents our estimate of 
g(go) in the limit ~ 2 ~  oo. 
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Fig. 8. Contours of the renormalizcd coupling constant g in the ~1, Go plane for the plane 
square lattice. Here ~ = (2 / (1  + ~2) and  (~o = g 0 / ( 2 4 0 +  go)- The thick curve represents 
g* = 14.5. 
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Fig. 9. Contours of the renormalized coupling constant g in the ~l, Go plane for the plane 
square lattice. Here g, = ~2/(1 + (2) and a o = ~o/(1 + go). The thick curve represents g* 
= 14.5. 

That is, the set of continuous-spin models that we have considered all 
belong to the same "universality class ''9 (except the g0 = 0 case). 

Note that here, as for d =  1, g(~2) with go fixed appears to be a 
monotonic decreasing function. This monotonicity is apparent in Fig. 6 and 
also in Fig. 8, where we have drawn contours of constant g in the g0-~ 2 
plane. The constant-g contours, when drawn in the ~-~ 2 plane (see Fig. 9), 
clearly show that g(~2) for fixed g0 is not monotonic. [We remark that our 
numerical analysis does not yield enough reliable information for us to 
predict the large-~ 2 region in Figs. 8 and 9. The topology of Fig. 9 is quite 
sensitive to the behavior of (d~l/dUJo)g when ~l = 1. We have assumed that 
(d~/dGo)g is greater than zero for g < g *  and equal to zero for g = g* 
when 4, = ~ .  Here ~l = ~2/( 1 + 4 2) and Go = g0/(240 + go)-] 

7.3. d=  3 (SC, BCC, FCC) 

In three dimensions a qualitative change in g(g0,~ 2) is evident. The 
small-g 0 behavior of g at fixed ~2 is consistent with the rigorous results of 
constructive field theory. (55) For small 4 2, the curves (see Figs. 10 and 11) 
are similar to those shown for d = 1 and d = 2. For large values of 4 2, 
however, g no longer increases monotonically with go (see Fig. 12). This 
behavior is more easily discernible when one examines g(g0) for fixed ~2. 

9 See Refs. 13, 15, 16, and 54. 
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Fig. 10. The renormalized COL[piing constant g as a function of the bare coupling constant go 
for several values of the correlation length ( on the body-centered-cubic lattice. The thick 
curve represents our estimate of g(go) in the limit 42-9 ' 03. The apparent error is indicated by 
the vertical bars. 
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Fig. 1 l. An enlargement of upper right-hand corner of Fig. 10. The dashed curves are drawn 
in keeping with the procedure described in (7.1). The apparent  error is indicated by the 
vertical bars. 
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Fig. 12. 

2; 
t) 0.2 0.4 0.6 0.8 1.0 

The renormalized coupling constant g as a function of g0 for several values of the 
correlation length ~ on the body-centered-cubic lattice. 

There are clear indications that g rises to a maximum value and then for 
~ o ~ 0 . 7  decreases; thus the hypothesis of Schrader (31) that g is a mono- 
tonic function of go for fixed ~ 2 does not appear to be valid. In Table VI we 
list values of g and g0 near the maximum and in the Ising limit (g0 = oo) 
for several values of ~ 2. 

Using the diagonal d log Pad6 approximants to the function Q(~2) 
= ( O 2 x / 8 I t 2 ) / x 2 ,  we have estimated the value of to* [defined in Eq. (2.32)]. 
These estimates are shown in Table VII  near the Ising limit; they are 
consistent with estimates of to* obtained from the integral approximants. As 
g0 moves away from the Ising limit, to* approaches zero. We conclude that 
for Ising-like systems, hyperscaling fails. Our values for to* at g0 = oo are 
consistent with the analysis of Baker, (l~) but the method we have used does 
not seem to be as accurate. 

The existence of two universality classes (Ising-like and non-Ising-like) 
for this model, i.e., the fact that the limits go---)co and ~ 2 ~  co do not 
commute, is strikingly apparent  when one constructs a picture of the entire 
g(g0, ~ 2) surface. We exhibit this surface by drawing lines of constant g on 
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Table VI. The Decay of the Renormalized Coupling Constant g(g0, ~z) from 
its Fixed-Point Value as the Ising Limit (g0 = ~ is Approached 

I l l  

~2 go = 0.35 go = 1 0  ~ = 

SC 4 25.1 • 0.1 24.7 -+ 0.2 29.7 -+ 0.3 
16 24.1 • 0.4 24.9 • 0.6 25.5 _+ 0.8 

64 23.7 • 0.8 23.3 • 1.0 22.8 _+ 1.2 

256 23.5 _+ 1.2 22.0 _+ 1.4 20.6 • 1.8 

1024 23.4 _+ 1.6 20.9 • 1.8 18.8 + 2.0 

4096 23.3 • 2.0 19,8 • 2.2 17.0 -+ 2.3 

106 22 .9 •  16.1 _+3.3 11.6_+2.6 

42 go = 0.7 go = 1.0 go = oe 

BCC 4 23.85 _+ 0.01 25.55 • 0.05 28.0 _ 0.1 

16 23.97-+0.02 24.2 +0.2 25.0-+0.1 

64 23.76+_0.04 23.6 _+0.3 23.1 --.0.3 

256 23.72 _+ 0.07 23.2 +_0.4 21.6 ___ 0.4 

1024 23.7 -+0.1 22.8 +--0.5 20.2 --- 0.5 

4096 23.7 +-0.1 22.5 _+0.2 18.8 _+ 0.5 

106 23.8 -+0.2 21.2 •  14.4+__0.7 

~2 go = 0.8 4o = 1.o go = 

FCC 4 24.77 ___ 0.05 25.22 • 0.01 27.78 ___ 0.08 
16 23.9 +0.2 24.10___ 0.01 25.1 _+0.2 

64 23.7 _+ 0.3 23.65 _+ 0.03 23.3 --_ 0.4 

256 23.6 _+0.4 23.36_+0.03 21.8 +--0.6 

1024 23.5 +--0.6 23.11 _+ 0.03 20.6 _+0.7 

4096 23.5 +0.8 22.87 -+ 0.05 19.3 +--0.7 

106 23.3 ___1.3 22.0 +-0.1 15.2 +-,1.3 
I I III 

Table VII. The Anomalous Dimension oz*, Defined by Eq. (2.32), as a Function 
of ~;o 

Lattice 1 10 

SC 0.12 ___ 0.06 0.20 ___ 0.10 0.22 • 0.10 

BCC 0.02 + 0.02 0.10 + 0.06 0.10 • 0.08 
FCC 0.02 -4- 0.04 0.08 _+ 0.08 0.10 _+ 0.06 

go 
Lattice 0.01 0.1 1 10 

HSC 0.16 _+ 0.02 0.40 • 0.04 0.50 + 0.08 0.58 ___ 0.08 0.58 ___ 0.08 
HBCC 0.10 • 0.02 0.26 _ 0.06 0.38 - O, 12 0.44 ___ 0.14 0.44 • 0.16 
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Fig. 13. Con tou r s  of the renormal ized coupl ing cons tan t  g in the ~64, Go plane for the 
body-centered-cubic lattice. Here ~6a = ~/(64 + 82) and Go = go/( 240 + go). The thick curve 
represents g* = 23.78. 

the G0 = g0/( 1 + g0) a n d  ~64 = ~2/( 64 + ~2) plane. This surface (Fig. 13) 
was obtained graphically from plots of g versus ~2 for fixed values of g0 (see 
Fig. 14). The analysis of the g surface indicates that a saddle point of 
elevation g -- 23.78 _+ 0.08 is located at g0 = 0.64 ___ 0.02 and ~ = 6.5 ___ 1.0. 
The saddle point is also apparent in the g0-~64 plane, as shown in Fig. 15. 
The failure of the Schrader monotonicity hypothesis, (31) the noncommuta- 
tivity of the go ~ ~ and ~ 2 ~  ~ limits, and the failure of hyperscaling for 
Ising-like systems are bound up with the presence of the saddle point. We 
wish to emphasize the fact that our numerical methods are very accurate at 
small correlation lengths (4 < 8). Since the saddle point is located at 

= 6.5 ___ 1.0, we are quite confident of its existence. 
We remark that Schrader (30 has shown that if the correlation length 

(second moment definition) is monotonic in the [sing model limit, and the 
transformation from the set of variables g0, K, and A to the variables • ls~2, 
and O2x/Ol~Z has a nonvanishing Jacobian everywhere in the relevant 
region, then g takes on its maximum value at the lsing limit for fixed 
two-point renormalization. That is, we impose Eqs. (2.22) and (2.23). Since 
X and/~2 are proportional to the scale of the spins squared, and ~2X/~1t2 to 
the scale to the fourth power, we can look for zeros of the Jacobian in the 
reduced two-by-two, scale-free transformation (g0, K) ---> (g, ~ 2). Numeri- 
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Fig. 14. The renormalized coupling constant g as a function of the correlation length squared 
2 for several values of go on the body-centered-cubic lattice. The vertical bars represent the 

apparent error. 
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Fig. 15. Contours of the renormalized coupling constant  g in the ~64, Go plane for the 
body-centered-cubic lattice. Here ~64 = ~2/(  64 + ~2) and  G o = 4o/(1 + go). The thick curve 
represents g* ~ 23.78. 
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cally we see no breakdown for any g0 in the monotonicity of ~2(K),1~ as all 
the series terms are positive and look very regular at the highest orders 
computed, and we find that the Jacobian vanishes at the above-mentioned 
saddle point, thus destroying the basis of Schrader's proof and reconciling 
our numerical results with his important and deep rigorous result. 

A study of g(~2) at the maximum yields the following estimates for g at 
the saddle point: 23.8 + 0.8 (SC), 23.78 + 0.08 (BCC), and 23.7_+ 0.3 
(FCC), all of which agree with the estimate 11 of g* = 23.81 _+ 0.07 found 
using an approach based on the Callen-Symanzik equation. (32'33) 

The controversy over the validity of the hyperscaling laws has existed 
for as long as the idea of hyperscaling; and it may be that there are some 
practitioners of hyperscaling who will not be totally convinced by our 
"numerical conclusion" that hyperscaling fails for sufficiently Ising-like 
continuous-spin models in three dimensions. Only a rigorous mathematical 
proof that hyperscaling is or is not valid will put an end to this controversy. 
While we await such a proof, it is important to keep in mind that, 
irrespective of the hyperscaling question in three dimensions, our work 
clearly indicates the existence of more than one "fixed point" for the 
continuous-spin Ising model: non-Ising-like systems have g * =  23.78 + 
0.08, while for Ising-like systems g* is certainly much less than 23.8. In 
other words, it is likely that the structure of g0:q,4:3 is more complicated 
than previously anticipated. 

7.4. d = 4 (HSC and HBCC) 

In four dimensions the behavior of g(g0,~ 2) is similar to that obs- 
served in lower dimensions if ~2 is kept small. For larger values of ~2, g(go) 
rises to a maximum at the point (g~a,, gmaX) and then falls as go ap- 
proaches infinite (see Fig. 16). The location of the maximum of this curve 
approaches the origin as ~ 2 approaches infinity. In Table VIII we list gmax 
for several values of ~ 2. Figure 17 shows that the dependence of gma* on ~ 2 
is roughly consistent with the 1/ ln~ 2 decline predicted from the perturba- 
tion theory result that g = go - c(ln~2)g 2 + O(g~). (Here c is a constant, 
independent of ~ 2 or g0.) 

The entire g(~o,~ 2) surface is shown in Fig. 18 for the HBCC lattice. 
The figure was obtained graphically from plots of g versus ~ 2 for fixed go. 
The structure of the surface is much simpler than its three-dimensional 
counterpart; it clearly indicates that for each go > 0, lim~2 ~ g(g0, ~2) = 0. 
That is, the field theory is trivial. 

J0 Related monotonicity properties have been rigorously established. See, for example, Ref. 56. 
N Baker et al. (1978), Ref. 32, report a value of 1.416 _+ 0.0015 for v*, where v* = 9g*/48~r. 
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Fig. 16. The renormalized coupling constant g as a function of the bare coupling constant go 
for several values of the correlation length ( on the hyper-body-centered-cubic lattice. The 
apparent error is indicated by the vertical bars. 

10 I I 

gmaX 6 I  

4 

2 

O I I 
0 0.1 0.2 0.3 

1/In(~2/lO) 

Fig. 17. The max imum value of the renormalized coupling constant gmax as a function of the 
correlation length (. The dots represent the data in Table V I I I .  The apparent error is indicated 
by the vertical bars. 

APPENDIX: H IGH-TEMPERATURE SERIES FOR X, ~X/O ~t2, AND V2 

The high-temperature series for X, 02X/0~2, and ~2 are given, through 
tenth order, in Tables AI, AII, and AIII, respectively. The series are for the 
case/~ -- 0; the expansion variable is K. [See Eq. (2.15).] The format of the 
tables is most easily explained by example: the susceptibility on the plane 
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in ' L k k ' '. L ! Z I 
_ g = 8  

I0 
08  

06  

A 
~64 

0.4 

[I.2 

Q 
0.2 0.4 06  0.8 1.0 

go = "~o/(1 + ~o) 

Fig. 18. Contours of the renormalized coupling constant g in the ~64, Go plane for the 
hyper-body-centered-cubic lattice. Here ~64 = ~2/( 64 + ~2) and do = go/(1 + go). 

Table Vllh The Maximum Value of 
the Renormalized Coupling Constant gmaX 
on theHSC and HBCC Lattices as a Func- 
tion of the Correlation Length Squares ,~2 

•2 m a x  m a x  
gHSC gHBCC 

1024 8.3 + 1.0 8.5 _+ 0.7 
2048 7.3 - 0.7 7.4 _+ 0.8 
4096 6.4 --_ 0.6 6.6 - 0.8 
8192 5.8 _+ 0.4 6.0 _+ 0.5 

16384 5.3 +- 0.3 5.4 ___ 0.4 
10 6 3.4 _+ 0.2 3.5 _+ 0.3 

squa re  la t t i ce  (PSQ)  t h r o u g h  o r d e r  K 4 is g iven  b y  

X = 12(0) + 4 /2(0)  2K + [2012(0)  3 + 4 1 2 ( 0 ) I 4 ( 0 ) ] K 2 / 2 !  

+ [13212(0)  4 + 7212(0)214(0) + 414(0)2]K3/3! 

+ [103212(0)  5 + 97212(0)314(0) + 3612(0)216(0) 

+ 16412(0)14(0) 2 + 414(0)I6(0)]K4/4! 

T h e  fac to rs  I . ( 0 )  a re  the  m o m e n t s  of the  s p i n - d e n s i t y  d i s t r i bu t i on .  [See Eqs.  
(2.16) a n d  (2.18).] 
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P 

- 0 -  
0 , 0 . 0 , 0 . 0 . 0  

- I -  
2 , 0 , 0 , 0 . 0 , 0  

- 2 -  
33.0,0,0.0.0 

4 . 0 . 0 . 0 , 0 , 0  
2,1.0,0,0,0 
0 , 2 , 0 , 0 . 0 , 0  

-4~ 
5 . 0 , 0 , 0 . 0 , 0  
5 , 1 , 0 . 0 . 0 , 0  
1 .2 .0 ,0 .0 .0  

6 . 0 , 0 , 0 , 0 , 0  
4 , 1 . 0 . 0 . 0 . 0  
5,0,I,0,0.0 
2,2,0,0.0.0 
1 ,1 ,1 ,0 ,0 ,0  
0.33.0.0,0.0 
0 , 0 , 2 , 0 . 0 . 0  

,,-6- 
7 .0 ,0 ,0 ,0 ,0  
5 , 1 , 0 , 0 . 0 . 0  
4 , 0 . 1 , 0 , 0 , 0  
5 . 2 . 0 . 0 , 0 . 0  
2 . 1 . 1 . 0 , 0 , 0  
1 .5 .0 .0 .0 ,0  
1 .0 ,2 .0 ,0 ,0  
0 , 2 . 1 , 0 . 0 . 0  

- 7 -  
8 , 0 . 0 , 0 , 0 , 0  
6 , 1 . 0 , 0 . 0 , 0  
5 . 0 , 1 , 0 . 0 , 0  
4 , 2 , 0 , 0 , 0 , 0  
4 , 0 . 0 , 1 . 0 . 0  
3 . 1 , 1 , 0 . 0 . 0  
2 , 3 . 0 , 0 , 0 , 0  
2 , 1 , 0 . 1 . 0 , 0  
2 . 0 , 2 , 0 . 0 . 0  
1 .2 .1 ,0 .0 ,0  
1 ,0 .1 .1 ,0 ,0  
0 . 4 , 0 , 0 , 0 , 0  
0 , 2 . 0 . 1 . 0 . 0  
0 . 1 . 2 . 0 . 0 . 0  
0 . 0 . 0 , 2 . 0 . 0  

- 8 -  
9 , 0 , 0 , 0 , 0 . 0  
7 .1 .0 ,0 ,0 ,0  
6 , 0 , 1 , 0 , 0 , 0  
5 . 2 , 0 , 0 , 0 . 0  
5 , 0 , 0 , 1 . 0 , 0  
4 , 1 , 1 , 0 . 0 , 0  
3 , 5 , 0 . 0 , 0 . 0  
33,1.0,1.0,0 
3 . 0 , 2 . 0 . 0 . 0  
2 . 2 . 1 , 0 , 0 . 0  
2 , 0 , 1 , I . 0 , 0  
1 .4 .0 ,0 .0 .0  
1 ,2 ,0 .1 ,0 ,0  
1 .1 .2 ,0 ,0 .0  
1 .0 ,0 ,2 .0 .0  
0,33,1,0,0.0 
0, I , 1 , 1 . 0 , 0  
0.0.33,0.0,0 

T 

0 

6 

144 

3294 
180 

6 

79056 
12960 

720 

2040120 
646920 

36OO 
64550 

90O 
560 

6 

57166560 
284.34240 

371520 
48O7O8O 
1404OO 
12096O 

1224 
288O 

1745418780 
1200653840 

244533920 
514976060 

756OO 
13958280 
18632880 

50400 
194964 
8O3O4O 

1680 
149730 

2100 
5O4O 

6 

58015258560 
50917507200 
133~906240 

18916269120 
9454880 

11183355840 
2069907840 

91123320 
22416576 

132216000 
3397824 

49791840 
920640 

2222976 
1824 

13357440 
18816 
6720 

144 

5294 
180 
6 

82944 
12096 
576 

2547920 
594OOO 

3600 
4887O 

9OO 
0 
6 

74766240 
27384480 

3336960 
5659040 
10800O 
51840 

864 
1440 

26~5431100 
12~0059200 

218333280 
246996540 

7560O 
10117800 
9802800 

50400 
1339524 
309120 

1680 
1043370 
2100 

0 
6 

104309130240 
62575027200 
1278789120 

15951600(030 
8709120 

818657280 
12085113360 

7015680 
14765184 
56448OOO 

274176 
233788800 

524160 
6O480O 

1152 
362880 

8064 
0 

SC P 

- 9 -  
0 10.0 ,0 .0 ,0 .0  

8, 1 .0 ,0 .0 ,0  
6 7.0,1 . [ I ,0 ,0 

6 ,2 .9 ,0 .0 ,0  
6 ,0 .0 ,1 ,0 .0  
5 ,1 ,1 ,0 .0 ,0  
5 .0 ,0 .0 ,  i .0 
4.3.0.0.0.0 
4,1,0.1,0,0 
4 ,0 ,2 ,0 ,0 ,0  
3 ,2 ,1 ,0 ,0 ,0  
3 .1 .0 ,0 .1 .0  
33.0,1.1.0.0 
2 ,4 ,0 ,0 .0 .0  
2 ,2 ,0 .1 ,0 .0  
2 ,1 .2 .0 .0 .0  
2 .0 ,1 .0 ,1 .0  
2 .0 .0 ,2 ,0 ,0  
1,3.1.0,0,0 
1.2.0.0,1.0 
1 ,1 .1 .1 .0 ,0  
1 ,0 ,5 ,0 ,0 ,0  
1 .0 ,0 ,1 ,1 ,0  
0 ,5 .0 .0 ,0 ,0  
0,33,0.1,0,0 
0 ,2 ,2 .0 ,0 .0  
0 ,1 ,1 .0 ,  I ,0 
O, 1 .0 ,2 ,0 ,0  
0 .0 ,2 ,1 ,0 ,0  
3,0.0,0,2,0 

-10-- 
11,0 ,0 ,0 ,0 ,0  
9 ,1 .0 ,0 .0 .0  
8 , 0 , 1 , 0 , 0 . 0  
7 ,2 ,0 ,0 ,0 .0  
7 ,0 ,0 ,1 ,0 ,0  
6 ,1 ,1 ,0 ,0 ,0  
6 ,0 ,0 ,0 ,1 ,0  
5 .3 ,0 ,0 ,0 ,0  
5 ,1 .0 .1 .0 ,0  
5 .0 ,2 .0 ,0 .0  
4 ,2 ,1 ,0 ,0 ,0  
4 ,1 .0 ,0 .  1,0 
4 ,0 ,1 ,1 ,0 ,0  
.3,4,0,0,0,0 
3 ,2 ,0 ,1 ,0 ,0  
3 .1 ,2 ,0 ,0 ,0  
3 ,0 ,1 ,0 .1 .0  
33,0.0,2,0,0 
2 .5 ,1 .0 .0 ,0  
2 ,2 ,0 ,0 ,1 ,0  
2 ,1 ,1 ,1 ,0 .0  
210.33,0,0.0 
2 ,0 .0 ,1 ,1 .0  
1 ,5 ,0 ,0 .0 ,0  
1,33,0,1,0.0 
1 ,2 ,2 .0 ,0 ,0  
1 ,1 ,1 ,0 ,1 ,0  
1 ,1 .0 .2 .0 .0  
i ,0.2,1.0,0 
1,0.0,0,2,0 
0 ,4 ,1 .0 ,0 ,0  
0 ,3 ,0 ,0 ,1 ,0  
0 ,2 ,1 ,1 ,0 .0  
0 , I , 3 , 0 . 0 , 0  
0 ,1 ,0 ,1 ,1 ,0  
0 . 0 , 2 . 0 , 1 . 0  
0.0,  1 .2 .0 ,0  

2091166126560 
2225242756800 

679148,06400 
1081454771880 

715508640 
787647823320 

13360800 
1901333107920 

983676960 
20495233560 

16202592000 
2268000 

60385232 
9579283560 

185499720 
449175888 

151200 
459918 

563855040 
3378000 

8269128 
2721600 

2700 
5441688O 
2721500 
7570584 

12600 
15120 
37800 

6 

8O286927840000 
1053342551278400 

526418C','~97600 
597303344200800 

454643328000 
5244792638400 

179625600 
15682621248000 

81496951200 
157533125(3720 

1607942145600 
430012800 

69331643040 
133579336876800 

26174080800 
65498963040 

383443320 
780O3O00 

126014767200 
132148800 

1 8 6 8 4 ~  
5582203320 

892080 
252..50097600 

1158040800 
5297026880 

833563320 
9447840 

223367520 
2520 

1052292800 
5225600 

36298080 
183355680 

46080 
48384, 

110880 

SC 

4495820565600 
3250986086720 

73869122880 
1027201989240 

6633798240 
61070662800 

1360800 
! 2O61872648O 

726959360 
135202284O 
7657040160 

2268OOO 
40515552 

4551377040 
899033520 

1336615248 
151200 
3323838 

207612720 
578000 

2689848 
0 

2700 
0 
0 

2936304 
1260O 

0 
0 
5 

211145941036800 
1769.,,302033564800 

4373643859200 
674766832332000 

45031593600 
43398829545600 

179625600 
10926042825600 

64207987200 
112057706880 
871058966400 

3483648OO 
4414435200 

584945525600 
12381012000 
22269461760 

2685512O 
47529920 

460074338400 
80740800 

628568640 
69552000 

557280 
6619536000 

228009600 
9100123320 

4175120 
2515520 
2116800 

1440 
242524800 

1209600 
556416O 
33326400 

17280 
18144 

0 
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P 

- 0 -  
0 . 0 , 0 . 0 . 0 . 0  

- 1 -  
2 . 0 . 0 , 0 , 0 . 0  

- 2 -  
3.0.0,0.0,0 

4 . 0 . 0 , 0 . 0 , 0  
2 , 1 . 0 , 0 . 0 , 0  
0 . 2 . 0 . 0 . 0 , 0  

- 4 -  
5.0.0.0.0.0 
3 . 1 . 0 , 0 , 0 , 0  
1 .2~0 .0 ,0 ,0  

6.0,0.0.0.0 
4 . 1 , 0 , 0 . 0 . 0  
3 , 0 , 1 , 0 . 0 , 0  
2 , 2 . 0 . 0 , 0 . 0  
1 . 1 , 1 , 0 , 0 , 0  
0 . 3 , 0 . 0 , 0 , 0  
0 . 0 . 2 . 0 . 0 . 0  

- 6 -  
7 . 0 , 0 . 0 . 0 , 0  
5 . 1 . 0 , 0 , 0 , 0  
4,0.I,0,0.0 
3 . 2 , 0 , 0 . 0 . 0  
2 . 1 . 1 . 0 . 0 . 0  
1 , 3 , 0 , 0 , 0 . 0  
1 , 0 . 2 . 0 . 0 . 0  
0 , 2 , 1 , 0 , 0 , 0  

- 7 -  
8 , 0 , 0 , 0 , 0 . 0  
6 , 1 , 0 , 0 . 0 , 0  
5 . 0 , 1 . 0 , 0 . 0  
4 , 2 , 0 . 0 , 0 , 0  
4.0,0, I.0,0 
3 , 1 , 1 , 0 , 0 , 0  
2 . 3 , 0 , 0 , 0 , 0  
2,1,0,I.0,0 
2 , 0 . 2 , 0 , 0 , 0  
1 . 2 . 1 . 0 . 0 . 0  
1 . 0 , I , 1 , 0 . 0  
0 , 4 . 0 . 0 . 0 . 0  
0 . 2 . 0 . 1 . 0 . 0  
0 , 1 , 2 . 0 , 0 , 0  
0 , 0 , 0 , 2 , 0 . 0  

- 8 -  
9 . 0 , 0 , 0 . 0 , 0  
7 . 1 , 0 , 0 , 0 , 0  
6.0,1,0.0,0 
5 . 2 , 0 , 0 . 0 , 0  
5.0.0. I,0.0 
4 , 1 , 1 , 0 , 0 , 0  
3 , 3 . 0 . 0 . 0 , 0  
3 , 1 , 0 , 1 . 0 , 0  
3 , 0 . 2 , 0 . 0 . 0  
2 , 2 , 1 . 0 , 0 . 0  
2 . 0 . 1 . 1 . 0 . 0  
1.4.0.0.0.0 
1 . 2 . 0 , 1 , 0 , 0  
1.1.2.0,0,0 
1 , 0 . 0 . 2 . 0 . 0  
0 . 3 . 1 . 0 , 0 , 0  
0 , 1 , 1 , 1 , 0 , 0  
0,0.3.0.0.0 

BCC 

0 

8 

256 

8136 
336 

8 

291840 
30720 

1024 

11847360 
2155680 

10080 
124200 

1680 
0 
8 

542056320 
144708480 

1313280 
13307520 

276480 
136320 

1536 
2560 

27689553360 
9861546240 

126080640 
1311379440 

352800 
38,OO496O 
37242240 

141120 
359856 
8O64OO 

3136 
294840 

3920 
0 
8 

156586429440O 
701510906880 

11075097600 
124944422400 

58O6O8OO 
4525~86720 
6627264000 

27740160 
54602240 

216903680 
702464 

95083520 
1361920 
1573376 

2048 
1039360 

14336 
0 

FCC 

0 

12 

576 

28620 
792 

12 

1601856 
120960 

2880 

101688480 
13878000 

396OO 
573660 

396O 
1440 

12 

7274422080 
1494987840 

9417600 
100694880 

1339200 
1097280 

4896 
I 1520 

58113,5060520 
162388074240 

154,3268160 
16187282760 

2494800 
317162160 
398603520 

55440O 
1779960 
7371840 

7392 
1378020 

9240 
20160 

12 

513820770624(30 
18310805775360 
223892121600 

2495026968320 
805593600 

63975098880 
107935188480 

241113600 
492608256 

2953870080 
3816960 

107588544O 
9O048OO 

20697600 
7296 

13171200 
75264 
26880 

P 
- 9 -  

1 0 , 0 , 0 , 0 , 0 , 0  
8 , 1 , 0 , 0 . 0 , 0  
7 , 0 . 1 . 0 , 0 , 0  
6 . 2 , 0 . 0 , 0 . 0  
6 , 0 , 0 , 1 , 0 . 0  
5 . 1 , 1 , 0 , 0 . 0  
5 , 0 . 0 , 0 . 1 . 0  
4 , 3 . 0 . 0 . 0 . 0  
4 , 1 . 0 , 1 , 0 , 0  
4 , 0 , 2 , 0 , 0 . 0  
3 . 2 , 1 , 0 . 0 , 0  
3 . 1 . 0 . 0 , 1 , 0  
3 , 0 , 1 , 1 , 0 , 0  
2 , 4 , 0 , 0 . 0 , 0  
2 , 2 , 0 . 1 , 0 , 0  
2 , 1 . 2 , 0 , 0 , 0  
2 . 0 . 1 , 0 , 1 , 0  
2 , 0 , 0 , 2 , 0 . 0  
1 , 3 , 1 , 0 , 0 . 0  
1 . 2 , 0 , 0 , 1 , 0  
1 . 1 , 1 . 1 , 0 , 0  
1 . 0 , 3 , 0 , 0 , 0  
1 . 0 . 0 , 1 , 1 , 0  
0 , 5 , 0 , 0 , 0 . 0  
0 . 3 . 0 . 1 , 0 , 0  
0 . 2 , 2 , 0 , 0 , 0  
0 , 1 , 1 . 0 , 1 . 0  
0 . 1 , 0 , 2 , 0 . 0  
0.0,2.1.0.0 
0 , 0 , 0 . 0 . 2 . 0  

- t ~  
( 1 1 , 0 , 0 . 0 . 0 , 0  

9 , 1 , 0 . 0 . 0 . 0  
8 . 0 , 1 , 0 . 0 . 0  
7 , 2 , 0 , 0 , 0 , 0  
7 , 0 , 0 , 1 , 0 , 0  
6 . 1 , 1 , 0 , 0 , 0  
6 , 0 . 0 , 0 . 1 , 0  
5 , 3 , 0 , 0 , 0 , 0  
5 , 1 , 0 . 1 . 0 . 0  
5 , 0 . 2 . 0 , 0 . 0  
4 , 2 , 1 . 0 . 0 , 0  
4 , 1 , 0 , 0 . 1 , 0  
4 , 0 , I , 1 , 0 . 0  
3 , 4 , 0 . 0 , 0 . 0  
3 , 2 , 0 , 1 . 0 , 0  
3 , 1 , 2 , 0 , 0 . 0  
3 , 0 , 1 , 0 . 1 , 0  
3 . 0 , 0 , 2 , 0 , 0  
2 , 3 , 1 . 0 , 0 , 0  
2 , 2 , 0 , 0 , 1 , 0  
2 , 1 . 1 . 1 . 0 , 0  
2 . 0 . 3 , 0 . 0 . 0  
2 . 0 , 0 , 1 , 1 . 0  
1 , 5 . 0 , 0 . 0 , 0  
1 , 3 . 0 , 1 , 0 , 0  
1 . 2 , 2 , 0 , 0 . 0  
1 , 1 . 1 , 0 , 1 , 0  
1,1,0,2.0.0 
1,0,2,1,0,0 
1 , 0 , 0 . 0 , 2 , 0  
0 , 4 . 1 , 0 , 0 , 0  
0 , 3 . 0 , 0 , 1 , 0  
0 . 2 . 1 . 1 , 0 , 0  
0 , 1 , 3 , 0 . 0 , 0  
0 , I , 0 . I , 1 . 0  
0 , 0 , 2 , 0 , I , 0  
0 . 0 . 1 . 2 , 0 , 0  

BCC 

97203332016000 
52628686346880 

954788446080 
11863433564640 

6885648OOO 
:503671089600 

12700800 
973073183040 

4386312000 
7433(302080 

43856789760 
10584O00 

154808640 
26173183680 

349322400 
533937600 

423360 
842760 

871799040 
10584OO 
7086240 

0 
5O4O 

0 
0 

8668800 
23520 

0 
0 
8 

6576908186419200 
4183098750028800 

83731439.232000 
1145876738227200 

731195942400 
54405867001600 

2467584000 
130711...x62163200 

588569587200 
920602851840 

74O89645O56OO 
2370816000 

24952757760 
5712234998400 

72602812800 
129615897600 

106444800 
176302080 

278141472000 
326592000 

2434440960 
276917760 

1428480 
41012697600 

972518400 
3945244800 

10859520 
5967360 
5523840 

2560 
1116595200 

3225600 
15482880 
10321920 

30720 
32256 

0 

FCC 

4987066700064960 
2170696355432640 

31402121808960 
380181901987440 

170464694400 
11856307075040 

179625600 
2508749.3158560 

68369767200 
114651981360 
914319342720 

74844000 
1412818848 

5O3109986400 
4512458160 

10226194272 
1663200 
4280364 

13154218560 
4158000 

77.387184 
26006400 

11880 
1208208960 

26006400 
76289472 

5544O 
60480 

151200 
12 

527505045793689600 
271946632765248000 

4431158495769600 
58638977446089600 

3O8O7586656O0O 
2099704961491200 

72503424000 
5369689921478400 

16018956576000 
24091235602560 

242584746566400 
39354336000 

415164476160 
180774607809600 

1654278292800 
3672740171520 

1029369600 
1772292960 

7156095811200 
3662O64OO0 

44988652800 
14,54.,3827200 

85968OO 
1373651395200 

2854414O8OO 
82117224000 

82051200 
89320320 

196459200 
10(~0 

24792163200 
32256000 

364976640 
298O512OO 

184320 
193536 
443520 
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P 

0 . 0 . 0 . 0 . 0 . 0  
- 1 -  

2 . 0 . 0 . 0 . 0 . 0  
- 2 -  

3,0,0,0,0~D 

4 , 0 , 0 , 0 . 0 . 0  
2,1,0,0.0,0 
0 . 2 . 0 . 0 . 0 . 0  

- 4 -  
5 . 0 . 0 . 0 . 0 . 0  
3.1.0.0.0.0 
1 . 2 . 0 . 0 . 0 . 0  

6 , 0 . 0 . 0 . 0 . 0  
4 . 1 . 0 . 0 . 0 . 0  
5.0.1.0.0.0 
2 . 2 . 0 . 0 . 0 . 0  
[ . I . 1 . 0 . 0 . 0  
0 . 3 . 0 . 0 . 0 . Q  
0 . 0 . 2 . 0 , 0 , 0  

- 6 -  
7 . 0 . 0 . 0 . 0 . 0  
5 . 1 . 0 . 0 . 0 , 0  
4 . 0 . 1 , 0 , 0 , 0  
3 , 2 , 0 , 0 , 0 . 0  
2 . 1 . 1 . 0 . 0 . 0  
1 .3 .0 .0 .0~0  
1 .0 .2 .0" .0 .~  
0 . 2 . 1 . 0 . 0 . 0  

- 7 -  
8.0,0,0.0,0 
6 . 1 . 0 , 0 . 0 , 0  
5 . 0 . 1 . 0 . 0 . 0  
4 . 2 . 0 . 0 . 0 . 0  
4 . 0 . 0 . 1 . 0 . 0  
3 , I , 1 , 0 . 0 , 0  
2 . 3 . 0 . 0 . 0 . 0  
2.1.0.1.0.0 
2 . 0 . 2 , 0 , 0 ~ 0  
1 . 2 . 1 . 0 . 0 . 0  
T . 0 . ~ . 1 . 0 . 0  
0 . 4 . 0 . 0 . 0 . 0  
0 . 2 . 0 . 1 . 0 . 0  
0 . 1 . 2 . 0 . 0 . 0  
0 . 0 . 0 . 2 . 0 . 0  

- 8 -  
9 . 0 . 0 . 0 . 0 . 0  
7 . 1 , 0 . 0 , 0 . 0  
6 . 0 . 1 . 0 . 0 . 0  
5 . 2 . 0 . 0 . 0 . 0  
5 . 0 . 0 . 1 . 0 . 0  
4 .1 .1~D .0 .0  
3,5,0.0,0,G 
3 . 1 . 0 . 1 . 0 . 0  
3 . 0 . 2 . 0 . 0 . 0  
2 . 2 . 1 . 0 . 0 . 0  
2 . 0 . 1 . 1 . 0 . 0  
1 . 4 . 0 . 0 . 0 . 0  
1 . 2 . 0 . 1 . 0 . 0  
1 . 1 . 2 . 0 . 0 . 0  
1 , 0 , 0 . 2 . 0 , 0  
0 . 3 , 1 . 0 . 0 . 0  
0 , 1 . 1 . 1 . 0 . 0  
0 , 0 , 3 . 0 . 0 . ~  

HSC 

0 

8 

256 

336 
8 

291840 
30720 

1024 

11959680 
2126880 

10080 
121320 

1680 
0 
8 

556882560 
141356160 

1513280 
12812160 

276480 
1248OO 

1536 
2560 

29135176560 
9659180160 

123177600 
1241474640 

352800 
36613920 
33855360 

141120 
349776 
766080 

3136 
24444O 

3920 
0 
8 

1695560509440 
698923522560 

10651253760 
116975577600 

58O6O8OO 
42605~7520 
59554J~ ~ 60 

27740160 
52344320 

i 96259840 
702464 

78955520 
1361920 
1465856 

2048 
824320 

14336 
0 

HBCC 

0 

16 

1024 

69Z64 
1440 

~6 

5443.584 
270336 

4096 

493785600 
# ~ Z90560 

100800 
~0720~ 

72OO 
0 

16 

51 ~ 54018560 
6175238400 

27740160 
2~8620800 

24576)00 
1140480 

6144 
~02~E, 

59704761 I~5960 
954. ~ 31270400 

5990826240 
54682551840 

9172800 
742728000 
696435920 

1411200 
3151904 
6997760 

L5440 
247.3520 

168OO 
0 

16 

776603~74816000 
155539735207040 

1203691545920 
11820578595840 

32875~ 1520 
19691427~00 
2730t324 t 9 2 ~  
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