The Continuous-Spin Ising Model, $g_{0}: \phi^{4}:{ }_{d}$ Field Theory, and the Renormalization Group

George A. Baker, Jr. ${ }^{1}$ and John M. Kincaid ${ }^{2}$

Received March 28, 1980

Abstract

We have used the method of high-temperature series expansions to investigate the critical point properties of a continuous-spin Ising model and $g_{0}: \phi^{4}:_{d}$ Euclidean field theory. We have computed through tenth order the hightemperature series expansions for the magnetization, susceptibility, second derivative of the susceptibility, and the second moment of the spin-spin correlation function on eight different lattices. Our analysis of these series is made using integral and Pade approximants. In three dimensions we find that hyperscaling fails for sufficiently Ising-like systems; the strong coupling limit of $g_{0}: \phi^{4}: 3$ depends on how the ultraviolet cutoff is removed. The level contours of the renormalized coupling constant for this model in the g_{0}, correlation-length plane exhibit a saddle point. If the ultraviolet cutoff is removed before $g_{0} \rightarrow \infty$, the usual field theory results and the renormalization-group fixed point with hyperscaling is obtained. If the order of these limits is reversed, the Ising model limit where hyperscaling fails and the field theory is trivial is obtained. In four dimensions, we find that hyperscaling fails completely; $g_{0}: \phi^{4}:_{4}$ is trivial for all g_{0} when the ultraviolet cutoff is removed.

KEY WORDS: Ising ferromagnet; Boson field theory; renormalization group; hyperscaling relations; high-temperature series expansions; Padé and integral approximants.

1. INTRODUCTION AND SUMMARY

In the early 1960s, greatly improved perturbation series combined with the powerful Padé method of analysis to yield accurate estimates of the critical indices for the spin-1/2 Ising model and other prototypical models. These

[^0]results and the emergence of scaling theories led to the recognition that there were several different classes of relations between the critical indices. ${ }^{(1,2)}$ Most of these relations comprise what are now called scaling laws; these relations follow from the assumption (or its equivalent) that free energies and correlation functions are homogeneous functions in the neighborhood of a critical point. Results from experiments, exactly soluble models, and numerous numerical studies provide strong support for the scaling laws. ${ }^{(2)}$ The other class of relations, for which the evidence was then the weakest, have become known as hyperscaling laws; they are relations between critical indices in which the spatial dimensionality explicitly appears. The idea of hyperscaling arose out of the assumption that the two-point correlation length of a single homogeneous phase was the only important length scale on which critical phenomena should be gauged. ${ }^{(2)}$ Alternatives to this "strong" scaling assumption have been developed by Stell ${ }^{(3)}$ and Fisher. ${ }^{(4)}$ (These "weak" scaling theories allow for the possibility that one or more additional lengths, such as the width of the interfacial boundary between two coexisting phases, become important in the critical region.) The assumption of critical point dominance of the correlation length supported various arguments that the details of interaction potentials do not play an essential role in determining the critical behavior. Thus it was expected that physical systems with the same basic "symmetries"3 would have the same set of critical indices-i.e., they would show the same universal behavior at the critical point. ${ }^{(5)}$ The validity of the hyperscaling relations in two dimensions has been established for a variety of systems. Most notably, it holds for the spin-1/2 Ising model. ${ }^{4}$ In three and higher dimensions, however, the evidence in support of hyperscaling has not been convincing-as evidenced by the many analyses of Ising-model hightemperature series expansions that have been reported. ${ }^{(11-14)}$ Similarly, the idea of universality in its original form has not been confirmed by experimental or theoretical investigations, although there is strong experimental evidence in the case of simple fluids that is consistent with hyperscaling. ${ }^{(15,16)}$ The basic set of "symmetries" (i.e., qualifiers used to define a universality class), has been repeatedly enlarged, thereby decreasing the size of the associated universality class. ${ }^{5}$

[^1]In the early 1970s, powerful calculational techniques developed for field theory were applied to the statistical mechanics of the critical point, ${ }^{(18,19)}$ and attention shifted away from the questions of hyperscaling and correlation length dominance. The field theory techniques, known as renormalization group methods, grew out of the connection between field theory and statistical mechanics pointed out by Symanzik ${ }^{(20)}$ and elaborated by Wilson ${ }^{(18)}$ and others. ${ }^{(21,22)}$ The renormalization group approach has intrinsic to its structure both scaling and hyperscaling relations, so that the values of all the critical indices are determined from just two indices plus the spatial dimension. The structure of the renormalization group methods appears to support the idea of universality. ${ }^{6}$ Unfortunately, the language of field theory and its precise connection with statistical mechanics was not immediately clear; there has been some uncertainty concerning the rigorous status of the renormalization group theory of critical phenomena. In particular, it has not been made clear whether hyperscaling and the critical point dominance of the correlation length are consequences of the renormalization group theory or are assumptions that have been appended to the theory.

The field-theoretic approach, in its most basic form, is tied to the properties of $g_{0}: \phi^{4}:{ }_{d}$ Euclidean field theory. The connection between this model field theory and a continuous-spin Ising model provides the basis for the renormalization group theory of critical phenomena. It is the point of view of this paper that the direct calculation of the properties of the continuous-spin Ising model, by the method of (convergent, not asymptotic) series expansions, should greatly clarify the status of the renormalization group theory of critical phenomena. Section 2 of this paper illustrates clearly the connection between $g_{0}: \phi^{4}:_{d}$ Euclidean field theory and a con-tinuous-spin Ising model with a spin density distribution given by $\exp (-$ $\tilde{g}_{0} s^{4}-\tilde{A} s^{2}$). We show that if hyperscaling fails, then the conventional renormalized coupling constant of the field theory vanishes. We find that the number of universality classes for the continuous-spin systems we consider is given by the number of values that the renormalized coupling constant attains in the strong coupling limit of $g_{0}: \phi^{4}: d$, i.e., $g_{0} \rightarrow \infty$. (See Section 3.) In the course of our numerical investigations we believe we have developed good numerical evidence on the following points.
(1) The renormalization group theory of critical phenomena is seen to depend on the key assumption that, within the context of a $g_{0}: \phi^{4}:{ }_{d}$ field theory, the limits $g_{0} \rightarrow \infty$ and $a \rightarrow 0$ commute. Here g_{0} is the bare coupling constant and a is the ultraviolet cutoff (lattice spacing). Our calculations show that the numerical evidence is consistent with this assumption for models in one and two dimensions. In three dimensions this assumption

[^2]fails. There appears to be at least two values for the renormalized coupling constant g in the strong coupling limit, depending on how the limits $g_{0} \rightarrow \infty, a \rightarrow 0$ are taken. For sufficiently Ising-like spin distributions, the renormalized coupling constant goes, numerically, to zero.
(2) A contour plot of g as a function of the sharpness of the spin density distribution \tilde{g}_{0} and the correlation length $\xi(\sim 1 / a)$ exhibits a saddle point. It is evident that the simple structure assumed in the renormalization group theory of critical phenomena is inadequate to describe the full richness of the subject.
(3) In four dimensions, the renormalized coupling constant as a function of the bare coupling constant for fixed (and sufficiently large) correlation length is a singly peaked curve. The numerical evidence is consistent with the idea that the peak height shrinks to zero inversely proportional to the logarithm of the correlation length. The strong coupling tail shrinks more rapidly to zero, roughly like $\xi^{-0.54 \pm 0.08}$. Thus, although the field theory of this model is trivial, it is not unreasonable to suppose that interesting statistical mechanics can result (i.e., these models display critical point properties that are distinct from those of the Gaussian model).
(4) Our numerical studies are in agreement with the rigorous results of constructive field theory for one and two dimensions, and those results appear to continue to hold up to and including the strong coupling limit. For the case of three dimensions, we find that the rigorous results for small g_{0} extend to all finite g_{0} when the ultraviolet cutoff is removed and there is a well-defined strong coupling limit ($\lim _{g_{0} \rightarrow \infty} \lim _{a \rightarrow 0}$). In four dimensions, the numerical results are consistent with the idea that the removal of the ultraviolet cutoff leads to a trivial (i.e., no scattering) field theory.

We conclude that the renormalization group theory of critical phenomena, as currently formulated, is in fact the theory of the first maximum of the renormalized coupling constant as a function of the bare coupling constant. This maximum may $(d=1,2)$ or may not $(d=3,4)$ coincide with the spin-1/2 Ising model.

In Section 2 we set out in detail the mathematical formulation of our model and relate it to both the usual statistical mechanical and field theory languages. We discuss the strong coupling limit in Section 3. There we trace how the key assumption (described above) of the renormalization group leads, in the context of our formulation, to some of the usual results of that theory. The generation of the high-temperature series expansions for the magnetization, susceptibility, second derivative of the susceptibility with respect to magnetic field, and correlation length is described in Section 4. Subsequently, in Section 5, we obtain the limiting large- and small- \tilde{g}_{0} behavior of the series in addition to other related quantities. [Here \tilde{g}_{0} is a parameter characterizing the spin-distribution density, defined in Eq.
(2.17).] In Section 6, we describe the series in the correlation length, and finally, in Section 7, we discuss our numerical results.

2. DEFINITION OF THE MODEL

The continuous-spin model which we treat can be thought of in two ways. One may consider the model to be a one-component, ferromagnetic Ising model in which the spin variables are continuously distributed from $-\infty$ to $+\infty$. Alternatively, it can be viewed as a lattice cutoff $g_{0}: \phi^{4}:_{d}$ Euclidean, Boson field theory. To make clear the relationship between these two interpretations, we will begin by defining the model within the context of field theory and then translate the model to the statistical mechanical form which, from a computational point of view, will be the one most convenient for our purposes.

It is usual to think of the Euclidean field theory as defined by the generating functional of the Schwinger functions (complete Euclidean Green's functions) S_{N}, ${ }^{(23)}$

$$
\begin{equation*}
Z(H)=\sum_{N=0}^{\infty} \frac{1}{N!} \int d x_{1} \cdots d x_{N} H\left(x_{1}\right) \cdots H\left(x_{N}\right) S_{N}\left(x_{1}, \ldots, x_{N}\right) \tag{2.1}
\end{equation*}
$$

We give the usual formal expression for this generating functional as the functional integral

$$
\begin{equation*}
Z(H)=M^{-1} \int[d \phi] \exp \left\{-\int d \mathbf{x}[\mathcal{E}(\phi)-\phi H]\right\} \tag{2.2}
\end{equation*}
$$

where the Lagrangian density \mathbb{E} is a function of the field variable ϕ and the integral in the exponent is over d-dimensional Euclidean space. The formal constant M is supposed to impose the condition

$$
\begin{equation*}
Z(0)=1 \tag{2.3}
\end{equation*}
$$

The usual expression for the action in a $g_{0}: \phi^{4}:{ }_{d}$ field theory is

$$
\begin{equation*}
\int d \mathbf{x} \mathscr{C}(\phi(\mathbf{x}))=\frac{1}{2} \int_{-\infty}^{\infty} \cdots \int d \mathbf{x}\left\{[\nabla \phi(\mathbf{x})]^{2}+m_{0}^{2}: \phi^{2}(\mathbf{x}):+\frac{2}{4!} g_{0}: \phi^{4}(\mathbf{x}):\right\} \tag{2.4}
\end{equation*}
$$

where m_{0} is the bare mass, g_{0} the bare coupling constant, and :: denotes the Wick ordered product.

The first step in moving toward the statistical mechanics of an Ising system is to replace (2.4) by a finite difference approximation on a finite portion (i.e., N points) of a regular space lattice. We therefore replace Eq.
(2.2) by

$$
\begin{align*}
Z(H)= & M^{-1} \int_{-\infty}^{\infty} \cdots \int \prod_{\mathbf{j}=1}^{N} d \phi_{\mathbf{j}} \exp \left\{-\frac{v}{2} \sum_{\mathbf{i}=1}^{N}\left[\frac{2 d}{q} \sum_{\{\delta\}} \frac{\left(\phi_{\mathbf{i}}-\phi_{\mathbf{i}+\delta}\right)^{2}}{a^{2}}\right.\right. \\
& \left.\left.+m_{0}^{2}: \phi_{\mathbf{i}}^{2}:+\frac{2}{4!} g_{0}: \phi_{\mathbf{i}}^{4}:+H_{\mathbf{i}} \phi_{\mathbf{i}}\right]\right\} \tag{2.5}
\end{align*}
$$

where M is a new normalization constant, a is the lattice spacing, d the spatial dimension, $v\left(\propto a^{d}\right)$ the volume per lattice site, q the lattice coordination number, the sum over $\{\boldsymbol{\delta}\}$ is the sum over half the nearest neighbor sites, and H_{i} is the source, or magnetic field, term at site \mathbf{i}.

If we attempt to calculate the scattering amplitude for this field theory as a perturbation expansion about $q_{0}=0$ we find, as is well known, ${ }^{(24)}$ that the coefficients in the expansion are dependent upon the lattice spacing a and diverge as $a \rightarrow 0$. These divergences can be removed by following the renormalization procedure of Bogolubov. ${ }^{(25)}$ In the case of the $g_{0}: \phi^{4}$: field theory this procedure leads to amplitude, mass, and coupling constant renormalization. The first two of the renormalizations can be accomplished by replacing H_{i} by $H_{\mathrm{i}} Z_{3}^{-1 / 2}$ and making the substitutions

$$
\begin{equation*}
\phi_{\mathrm{i}}=Z_{3}^{1 / 2} \psi_{\mathrm{i}} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
m_{0}^{2}=m^{2}+\delta m^{2} \tag{2.7}
\end{equation*}
$$

Thus, redefining M, we have, using Eqs. (2.5)-(2.7),

$$
\begin{align*}
Z(H)= & M^{-1} \int_{-\infty}^{\infty} \cdots \int \prod_{j=1}^{N} d \psi_{\mathbf{j}} \exp \left\{-\frac{v}{2} \sum_{\mathrm{i}}\left[\frac{2 d Z_{3}}{q} \sum_{\{\delta\}} \frac{\left(\psi_{\mathbf{i}}-\psi_{\mathbf{i}+\delta}\right)^{2}}{a^{2}}\right.\right. \\
& +m^{2} Z_{3}\left(\psi_{\mathbf{i}}^{2}-\frac{C}{Z_{3}}\right)+\frac{2}{4!} g_{0} Z_{3}^{2}\left(\psi_{\mathbf{i}}^{4}-\frac{6 C \psi_{\mathbf{i}}^{2}}{Z_{3}}+\frac{3 C}{Z_{3}^{2}}\right) \\
& \left.\left.+\delta m^{2} Z_{3}\left(\psi_{\mathbf{i}}^{2}-\frac{C}{Z_{3}}\right)+H_{\mathbf{i}} \psi_{\mathbf{i}}\right]\right\} \tag{2.8}
\end{align*}
$$

In Eq. (2.8) we have expressed the normal ordered products : $\left(\phi_{\mathrm{j}}\right)^{p}$: in terms of the Boson commutator $C=\left[\phi^{-}, \phi^{+}\right]$and ordinary products of ϕ_{j} using the relation ${ }^{(21)}$

$$
\begin{equation*}
:\left(\phi_{\mathrm{j}}\right)^{p}:=\sum_{n=0}^{[p / 2]}(-1)^{n} \frac{p!}{(p-2 n)!n!} 2^{-n} C^{n}\left(\phi_{\mathrm{j}}\right)^{p-2 n} \tag{2.9}
\end{equation*}
$$

The commutator C is just the sum over the lattice Green's function and is given by

$$
\begin{equation*}
C=\frac{1}{V} \sum_{\mathbf{k}}\left[m^{2}+\frac{8 d}{q a^{2}} \sum_{\{\boldsymbol{\delta}\}} \sin ^{2}(\pi \mathbf{k} \cdot \boldsymbol{\delta} a)\right]^{-1} \tag{2.10}
\end{equation*}
$$

where V is the total volume, the summation on \mathbf{k} is over the reciprocal lattice, and $\{\boldsymbol{\delta}\}$ is again one-half the nearest-neighbor sites. It is easily seen that in the limit $a \rightarrow 0$

$$
\lim _{V \rightarrow \infty} C \propto \begin{cases}a^{2-d}, & d>2 \tag{2.11}\\ -\ln (a m), & d=2 \\ \text { finite, } & d<2\end{cases}
$$

The renormalization constants Z_{3} and δm^{2} are determined by the requirements that

$$
\begin{equation*}
\Gamma_{R}^{(2)}(\mathbf{p},-\mathbf{p})=m^{2}+4 \pi^{2} p^{2} \tag{2.12}
\end{equation*}
$$

for p near zero. Here $\Gamma_{R}^{(2)}(\mathbf{p},-\mathbf{p})$ is the propagator defined by

$$
\begin{equation*}
\Gamma_{R}^{(2)}(\mathbf{p},-\mathbf{p})=\left\{\left.v \sum_{\mathbf{j}=0}^{N-1} \frac{\partial^{2} \ln Z(H)}{\partial H_{0} \partial H_{\mathbf{j}}}\right|_{H=0} \exp [-2 \pi i \mathbf{p} \cdot \mathbf{j} a]\right\}^{-1} \tag{2.13}
\end{equation*}
$$

Before using Eqs. (2.12) and (2.13) to obtain explicit equations for Z_{3} and δm^{2}, it is convenient to introduce yet another change of variable. Let

$$
\begin{equation*}
\psi_{\mathrm{i}}=\sigma_{\mathrm{i}}\left(2 d Z_{3} v / q K a^{2}\right)^{-1 / 2} \tag{2.14}
\end{equation*}
$$

In terms of these new variables σ_{i} and $K, Z(H)$ assumes the form of the partition function of a continuous-spin ferromagnetic Ising model

$$
\begin{equation*}
Z(\tilde{H})=M^{-1} \int_{-\infty}^{\infty} \cdots \int \prod_{\mathbf{j}=1}^{N}\left[d \sigma_{\mathbf{i}} F\left(\sigma_{\mathbf{i}}\right)\right] \exp \left[K \sum_{\mathbf{i},\{\boldsymbol{\delta}\}} \sigma_{\mathbf{i}} \sigma_{\mathbf{i}+\boldsymbol{\delta}}\right] \tag{2.15}
\end{equation*}
$$

with a spin distribution density $F(\sigma)$ given by

$$
\begin{equation*}
F(\sigma)=\exp \left(-\tilde{g}_{0} \sigma^{4}-\tilde{A} \sigma^{2}+\tilde{H} \sigma\right) \tag{2.16}
\end{equation*}
$$

where

$$
\begin{align*}
& \tilde{A}=(q K / 4 a)\left(2 d+m^{2} a^{2}+\delta m^{2} a^{2}-\frac{1}{2} C a^{2} g_{0}\right) \\
& \tilde{g}_{0}=g_{0} K^{2} q^{2} a^{4} / 96 d^{2} v \\
& \tilde{H}_{\mathrm{i}}=H_{\mathrm{i}}\left(2 d Z_{3} v / q K a^{2}\right)^{-1 / 2} \tag{2.17}
\end{align*}
$$

(Note that we have again redefined M.) The variable K adds an additional degree of freedom to the model. We eliminate the additional degree of
freedom by imposing the condition $I_{2}(0)=1$, where

$$
\begin{equation*}
I_{n}(\tilde{H})=\frac{\int_{-\infty}^{\infty} d \sigma \sigma^{n} F(\sigma)}{\int_{-\infty}^{\infty} d \sigma F(\sigma)} \tag{2.18}
\end{equation*}
$$

Thus, $Z(\tilde{H})$ depends on the parameters K, \tilde{g}_{0}, and H_{i}; the other parameter, \tilde{A}, is a function of \tilde{g}_{0} as determined by the condition $I_{2}(0)=1$. Figure 1 shows the function $\tilde{A}\left(\tilde{g}_{0}\right)$. We remark that for $\tilde{g}_{0}=0, \tilde{A}=\frac{1}{2}$ and $Z(\tilde{H})$ defines the Gaussian model ${ }^{(26)}$; in the limit $\tilde{g}_{0} \rightarrow \infty, \tilde{A} \rightarrow-2 \tilde{g}_{0}$ and $Z(\tilde{H})$ represents the usual spin- $\frac{1}{2}$ Ising model. ${ }^{(27)}$ We may now reexpress Eq. (2.13) in terms of the expectation values of the σ 's:

$$
\begin{align*}
\Gamma_{R}^{(2)}(\mathbf{p},-\mathbf{p}) & =\left[\frac{q K a^{2}}{2 d Z_{3}} \sum_{\mathbf{j}=0}^{N-1}\left\langle\sigma_{0} \sigma_{\mathbf{j}}\right\rangle \exp (-2 \pi i \mathbf{p} \cdot \mathbf{j} a)\right]^{-1} \\
& =\frac{2 d Z_{3}}{q K a^{2}} \chi^{-1}\left[1+(2 \pi)^{2} \xi^{2} a^{2} p^{2}+\cdots\right] \tag{2.19}
\end{align*}
$$

where the magnetic susceptibility χ is defined by

$$
\begin{equation*}
\chi=\sum_{\mathbf{j}=0}^{N-1}\left\langle\sigma_{0} \sigma_{\mathbf{j}}\right\rangle-\left\langle\sigma_{0}\right\rangle^{2} \tag{2.20}
\end{equation*}
$$

and the correlation length ξ is defined in terms of the second moment of

Fig. 1. \tilde{A} versus $\tilde{g}_{0} \cdot \tilde{A}\left(\tilde{g}_{0}\right)$ is obtained from the constraint $I_{2}(0)=1$. When $\tilde{g}_{0}=[\Gamma(3 / 4)$ $/ \Gamma(1 / 4)]^{2}, \tilde{A}=0$. As $\tilde{g}_{0} \rightarrow \infty, \tilde{A} \rightarrow-2 \tilde{g}_{0}-1 / 2$.
the spin-spin correlation function:

$$
\begin{align*}
& \mu_{2}=\sum_{\mathbf{j}=0}^{N}\left(\frac{\mathbf{j}}{a}\right)^{2}\left[\left\langle\sigma_{0} \sigma_{\mathbf{j}}\right\rangle-\left\langle\sigma_{0}\right\rangle^{2}\right] \\
& \xi^{2}=\mu_{2} / 2 d \chi \tag{2.21}
\end{align*}
$$

Here the angular brackets denote the usual ensemble average and ξ is measured relative to the lattice spacing a. Comparing Eqs. (2.12) and (2.19), we find that

$$
\begin{align*}
m^{2} & =\left(2 d Z_{3} / q K a^{2}\right) \chi^{-1} \tag{2.22}\\
m^{2} \xi^{2} a^{2} & =1 \tag{2.23}
\end{align*}
$$

The selection of a mass in field theory is equivalent to the selection of a length scale for the statistical mechanical model. For example, $m=\xi^{-1}$ would select a lattice of unit spacing as is common in statistical mechanical applications. A fixed mass, $m=1$, on the other hand, would scale the lattice spacing a to zero as $\xi \rightarrow \infty$ when the temperature approaches the critical temperature (i.e., $K \rightarrow K_{c}$).

Now let us consider the third and final renormalization. A renormalized coupling constant g_{R} is obtained by rescaling the zero-momentum scattering amplitude:

$$
\begin{align*}
g_{R} & =\Gamma_{R}^{(4)}(0,0,0,0) \\
& =-\left.v^{3} \sum_{\mathbf{j}, \mathbf{k}, \mathrm{l}=0}^{N-1} \frac{\partial^{4} \ln Z(H)}{\partial H_{0} \partial H_{\mathbf{j}} \partial H_{\mathbf{k}} \partial H_{1}}\right|_{H=0}\left[v \sum_{\mathbf{j}=0}^{N-1} \frac{\partial^{2} \ln Z(H)}{\partial H_{0} \partial H_{\mathbf{j}}}\right]^{-4} \tag{2.24}
\end{align*}
$$

This quantity is important from the field theory point of view because if it vanishes there is no scattering described by the model-i.e., the model represents a generalized free field. ${ }^{(28)}$ If we reexpress (2.24) in terms of the σ variable, we get, using Eq. (2.22),

$$
\begin{equation*}
g_{R}=-v m^{4} \frac{\partial^{2} \chi / \partial \tilde{H}^{2}}{\chi^{2}} \tag{2.25}
\end{equation*}
$$

where we define

$$
\begin{equation*}
\frac{\partial^{2} \chi}{\partial \tilde{H}^{2}}=\sum_{j, k, l=0}^{N-1} u_{4}\left(\sigma_{0}, \sigma_{\mathbf{j}}, \sigma_{\mathbf{k}}, \sigma_{\mathbf{l}}\right) \tag{2.26}
\end{equation*}
$$

Here u_{4} is the fourth Ursell function. ${ }^{(29)}$ Equations (2.25) and (2.23) can be used to define the dimensionless, renormalized coupling constant g,

$$
\begin{equation*}
g \equiv g_{R} m^{d-4}=-\frac{v}{a^{d}} \frac{\partial^{2} \chi / \partial \tilde{H}^{2}}{\chi^{2} \xi^{d}} \tag{2.27}
\end{equation*}
$$

which is a convenient form because v / a^{d} is a pure number and the other factors in Eq. (2.27) are directly expressible in terms of the expectation values of the σ 's.

It is clear from the form of Eq. (2.27) why g is important to the theory of ferromagnetic Ising models. As we approach the critical point from temperatures above the critical temperature ($K<K_{c}$, with $H=0$) we know that ${ }^{(2)}$

$$
\begin{gather*}
\chi \sim A_{+}\left(1-K / K_{c}\right)^{-\gamma}, \quad \xi \sim D_{+}\left(1-K / K_{c}\right)^{-\nu} \\
\partial^{2} \chi / \partial \tilde{H}^{2} \sim-B_{+}\left(1-K / K_{c}\right)^{-\gamma-2 \Delta} \tag{2.28}
\end{gather*}
$$

thus as $K \rightarrow K_{c}$,

$$
\begin{equation*}
g \sim \frac{v}{a^{d}} \frac{B_{+}}{A_{+} D_{+}^{d}}\left(\frac{1-K}{K_{c}}\right)^{\gamma+d v-2 \Delta} \tag{2.29}
\end{equation*}
$$

It has been proven rigorously that as $K \rightarrow K_{c}, g$ remains finite, ${ }^{(30)}$ which implies that

$$
\begin{equation*}
\gamma+d \nu \geqslant 2 \Delta \tag{2.30}
\end{equation*}
$$

Equation (2.30), taken as an equality, is a "hyperscaling relation" between the critical exponents γ, Δ, and ν and the spatial dimension d. Thus the behavior of g as $K \rightarrow K_{c}$ is a diagnostic of whether this hyperscaling relation fails $(g \rightarrow 0)$ or holds (g remains finite).

We may solve Eqs. (2.22), (2.23), and (2.28) to determine how the various parameters behave as $K \rightarrow K_{c}$ with \tilde{g}_{0} fixed. We obtain

$$
\begin{align*}
a & \sim \frac{1}{m D_{+}}\left(\frac{1-K}{K_{c}}\right)^{v} \\
Z_{3} & \sim \frac{q K A_{+}}{2 d D_{+}^{2}}\left(\frac{1-K}{K_{c}}\right)^{\eta \nu} \sim \frac{q K A_{+}}{2 d D_{+}^{2-\eta}}(m a)^{\eta} \tag{2.31}\\
g & \sim \frac{v}{a^{d}} \frac{B_{+}}{a_{+} D_{+}^{d}}\left(m D_{+} a\right)^{\omega^{*}}
\end{align*}
$$

where $\eta=2-\gamma / \nu$ and we have defined the "anomolous dimension of the vacuum" ω^{*} by the relation

$$
\begin{equation*}
\gamma+\left(d-\omega^{*}\right) \nu=2 \Delta \tag{2.32}
\end{equation*}
$$

The actual computations reported in this paper depend on the properties of g as a direct function of K (the inverse temperature) and parametrically as a function of \tilde{g}_{0}. The further dependence on \tilde{H} is not studied.

3. THE STRONG COUPLING REGION

In the previous section we saw that the plan of the renormalization scheme in field theory is to arrange the parameters of the model and the quantities computed from the model so that they are all finite and nonzero in the limit where a, the ultraviolet cutoff, goes to zero-that is, $K \rightarrow K_{c}$. In statistical mechanical applications \tilde{g}_{0} is fixed. This condition means, by Eq. (2.17), that g_{0} tends to infinity $(d<4)$ as $a \rightarrow 0$ (as long as $d>1$ so that K_{c} is not infinite). Thus it is the strong coupling region, $a \rightarrow 0, g_{0} \rightarrow \infty$, that characterizes the critical point of statistical mechanics. The application of renormalization group methods as developed by Wilson to the study of critical phenomena is strongly dependent upon the properties of the field theory in the strong coupling region. The key assumption of the renormalization group approach is that all renormalized quantities are continuously differentiable in the neighborhood of $a=0,0 \leqslant g_{0} \leqslant \infty$. In particular, for example, $g\left(g_{0}, a\right)$ is assumed to be continuous in the quadrant $0 \leqslant g_{0} \leqslant \infty$, $a \geqslant 0$ including the point $(\infty, 0)$. To illustrate this point we present a brief review of those aspects of the Callan-Symanzik equation approach to Wilson's renormalization group theory that focus upon the nature of the strong coupling region.

We begin by considering the consequences of the key assumption mentioned above. For any fixed, nonzero value of \tilde{g}_{0}, Eq. (2.17) implies that the limit $a \rightarrow 0$ corresponds to $g_{0}=\infty, a=0$. Thus, all continuous-spin Ising models defined by Eq. (2.15) (of the same dimension) have the same value of g, i.e., it is universal. After we have taken the limit $a \rightarrow 0$, (fixing K at K_{c}), there remains only one parameter left to describe the model; the renormalization group choice is to make this parameter g. Since g can be expanded in a power series in g_{0}, and this series can be formally reverted to g_{0} as a formal series in g, we can reexpress the various quantities of interest as formal series in g instead of g_{0}. (Proper rules have been given to perform this expansion directly in terms of Feynman diagrams.) This procedure now points to the desirability of finding the universal value of g, denoted g^{*}, that corresponds to all the statistical mechanical models. We mention that the reversion of $g\left(g_{0}, 0\right)$ to $g_{0}(g, 0)$ depends on Schrader's monotonicity hypothesis, ${ }^{(31)} g\left(g_{0}, a\right)$ is a monotonic increasing function of $g_{0}, 0 \leqslant g_{0}$ $\leqslant \infty$ for fixed a. If there should be a maximum, then there would necessarily be a branch point in the reverted function $g_{0}(g, a)$. While in principle one can analytically continue around such a branch point to the proper Riemann sheet, no practical calculation that we know of has contemplated this added complication.

To find the value of g^{*}, the renormalization group procedure is to construct a discriminant function, which can be used directly in the limit
$a \rightarrow 0$, to find g^{*}. The one proposed is

$$
\begin{equation*}
\beta(g)=(d-4) g_{0}\left(\frac{\partial g}{\partial g_{0}}\right)_{m, a, d} \tag{3.1}
\end{equation*}
$$

If $g \rightarrow g^{*}<\infty$ as $g_{0} \rightarrow \infty$ as assumed (i.e., monotonically), then it follows that $\beta\left(g^{*}\right)=0$. From the formal expansion $g\left(g_{0}, 0\right)$ one can directly compute $\beta(g)$ by formal manipulations; the series can then be summed ${ }^{(32,33)}$ and g^{*} sought as the zero of the β function.

The critical indices can be computed using the following approach, which, by way of example, we apply to the calculation of the index η. Using Eqs. (2.23) and (2.31), we find

$$
\begin{equation*}
\eta=\lim _{a \rightarrow 0} a\left(\frac{\partial \ln Z_{3}}{\partial a}\right) \tilde{g}_{0} \tag{3.2}
\end{equation*}
$$

In order to use the field theory methods, we need to "turn" the direction of the derivative to the g_{0} direction. To do this we write

$$
\begin{equation*}
Z_{3}\left(g_{0}, a\right)=Z_{3}\left(c a^{d-4} \tilde{g}_{0}, a\right) \tag{3.3}
\end{equation*}
$$

with $c=96 d\left(v / a^{d}\right) / K^{2} q^{2}$, so that

$$
\begin{align*}
a\left(\frac{\partial Z_{3}}{\partial a}\right) \tilde{g}_{0} & =(d-4) c a^{d-4} \tilde{g}_{0}\left(\frac{\partial Z_{3}}{\partial g_{0}}\right)_{a}+a\left(\frac{\partial Z_{3}}{\partial a}\right)_{g_{0}} \\
& =(d-4) g_{0}\left(\frac{\partial Z_{3}}{\partial g_{0}}\right)_{a}+a\left(\frac{\partial Z_{3}}{\partial a}\right)_{g_{0}} \tag{3.4}
\end{align*}
$$

Thus by the continuous differentiability assumed, we have, from Eqs. (3.4) and (3.2)

$$
\begin{equation*}
\lim _{g_{0} \rightarrow \infty}(d-4) g_{0} \frac{\partial \ln Z_{3}\left(g_{0}, 0\right)}{\partial g_{0}}=\eta \tag{3.5}
\end{equation*}
$$

Rewriting this equation in terms of g, using Eq. (3.1),

$$
\begin{equation*}
\eta=\lim _{g \rightarrow g^{*}} \beta(g) \frac{\partial \ln Z_{3}}{\partial g} \tag{3.6}
\end{equation*}
$$

Similar expressions can be developed for other critical exponents. ${ }^{(19)} \mathrm{We}$ point out that for $d=2,3$, these differentiability conditions have been rigorously proved for sufficiently small g_{0}. That is, the field theory is well defined by the (asymptotic) perturbation theory. With a lattice cutoff, $g=g\left(g_{0}, 0\right)+0\left(a^{2}\right)$ for $d=1,2$ and $g=g\left(g_{0}, 0\right)+0(a)$ for $d=3$, as can be shown by term-by-term calculations in small- g_{0} perturbation theory.

In summary, we see that the cornerstone of the renormalization group scheme is the assumption that the perturbation theory (in g_{0}) is both correct
and complete. We will discuss in a later section how the point ($g_{0}=\infty, a$ $=0$) is not always a point of joint continuity in g_{0} and a, and how the turning of the direction of the derivative [see Eqs. (3.2) and (3.6)] is affected by this result.

4. GENERATION OF THE HIGH-TEMPERATURE SERIES

In this section we describe how we obtained the high-temperature series expansions (i.e., expansions in powers of K) of the various quantities needed to calculate g. The series were generated using the method of Wortis. ${ }^{(34)}$ Our starting point is the partition function given by Eq. (2.15) and the series coefficients are found to depend upon the moments $I_{n}(\tilde{H})$ of the spin distribution density F given by Eqs. (2.18) and (2.16), respectively. Some previous results of this type have been given by Camp and van Dyke. ${ }^{(35)}$

We will describe briefly the Wortis method in order to put our calculations in context. Fundamentally, this method is based on Taylor's theorem:

$$
\begin{equation*}
w(x)=\left.\exp \left(x \frac{\partial}{\partial y}\right) w(y)\right|_{y=0}=\left.\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \frac{\partial^{n} \omega}{\partial y^{n}}\right|_{y=0} \tag{4.1}
\end{equation*}
$$

for $|x|$ less than the radius of convergence of the series. The idea then is to expand the function $W(K, \tilde{H})$ defined by

$$
\begin{equation*}
Z(\tilde{H})=\exp [W(K, \tilde{H})] \tag{4.2}
\end{equation*}
$$

in a Taylor series. Using Eq. (4.1), we have

$$
\begin{equation*}
W(K, \tilde{H})=\left.\exp \left(\sum_{\mathbf{i}<\mathbf{j}} K_{\mathbf{i j}} \frac{\partial}{\partial \tilde{K}_{\mathbf{i j}}}\right) W(\tilde{K}, \tilde{H})\right|_{\tilde{K}=0} \tag{4.3}
\end{equation*}
$$

Here we have rewritten the nearest-neighbor interaction term $K \sum_{i,\{\delta\}} s_{\mathrm{i}} s_{\mathrm{i}+\delta}$ by the more general two-spin interaction energy given by $\sum_{i<j} K_{\mathrm{ij}} s_{\mathrm{i}} s_{\mathrm{j}}$, where $K_{\mathrm{ij}}=K$ if \mathbf{i} and \mathbf{j} label nearest-neighbor sites and $K_{\mathrm{ij}}=0$ otherwise. The next step is to convert the derivatives $\partial / \partial K_{\mathrm{ij}}$ to equivalent derivatives with respect to \tilde{H}. This process will leave us with a derivative operator on $W(0, \tilde{H})$ that factors into individual site terms and can be explicitly evaluated. The simplest such conversion formula is

$$
\begin{equation*}
\frac{\partial W}{\partial K_{\mathrm{ij}}}=\frac{\partial^{2} W}{\partial \tilde{H}_{\mathrm{i}} \partial \tilde{H}_{j}}+\frac{\partial W}{\partial \tilde{H}_{\mathrm{i}}} \frac{\partial W}{\partial \tilde{H}_{\mathrm{j}}} \tag{4.4}
\end{equation*}
$$

The complete rule is given by Wortis in terms of the cumulants

$$
\begin{equation*}
M_{n}^{\oplus}(h)=\frac{d^{n}}{d h^{n}} \ln I_{0}(h) \tag{4.5}
\end{equation*}
$$

where I_{0} is given by (2.18). The rule is

$$
\begin{equation*}
W(K, \tilde{H})=N \sum_{\tau}\left\{\frac{M_{f}(\tau)}{s(\tau)}\left[\prod_{v_{i} \in \tau} M_{m(i)}^{0}\left(\tilde{H}_{i}\right)\right] K^{l(\tau)}\right\} \tag{4.6}
\end{equation*}
$$

Here the sum over τ is the sum over all topologically distinct, unrooted, possibly multilined, connected graphs. The product over v_{i} is a product over the vertex set of τ with $m(i)$ the multiplicity of the i th vertex and \tilde{H}_{i} the magnetic field at that vertex. The function $l(\tau)$ is the number of lines of τ, and $M_{f}(\tau)$ is the free multiplicity per site of τ on the edge set defined by the partition function $Z(\tilde{H})$.

We mention that the free multiplicity ${ }^{(34)}$ used here differs from the more usual weak multiplicity in its lack of the self-avoiding requirement on the embeddings of τ on the lattice under consideration. For example, the free multiplicity of an n-edge, linear chain, or any n-edge tree for that matter, is just q^{n}, where q is the lattice coordination number. The free multiplicity has the important property that if a graph has an articulation point, then the free multiplicity for that graph is the product of the free multiplicities of the subgraphs formed by cutting the graph at its articulation point. Capitalizing on this property, Wortis has further reduced the combinatorial problem, at the cost of increased algebraic complexity, by means of a vertex renormalization procedure. Any graph with one or more articulation points can be separated into its component star (multiply connected) graphs by cutting it at every articulation point. Conversely, the class of all topologically distinct, unrooted, connected graphs can be constructed by joining star graphs together; however, care must be taken not to generate the same graph more than once. To accomplish this construction it is convenient to consider the decoration of a single vertex. We need for this task the sum of all one-rooted graphs $G_{l}(i)$, where there are l edges incident on the root at site i. If we self-consistently assume that every vertex in $G_{l}(i)$ is already replaced by the sum of all the required decorations, then we only need the single-rooted stars to construct the $G_{l}(i)$. For example,

Now we can write the equations for a single decorated vertex with n edges attached as

$$
\begin{equation*}
M_{n}(i)=M_{n}^{0}(i)+\sum_{l=i}^{\infty} G_{l}(i) M_{n+l}^{0}(i)+\frac{1}{2!} \sum_{l, m=1}^{\infty} G_{l}(i) G_{m}(i) M_{n+l+m}^{0}(i)+\cdots \tag{4.8}
\end{equation*}
$$

and the equation for the G_{l} is

$$
\begin{equation*}
G_{l}(i)=\sum_{\tau}\left\{\frac{M_{f}(\tau)}{s(\tau)}\left[\prod_{v_{j} \in \tau \backslash i} M_{m(j)}\left(\tilde{H}_{j}\right)\right] K^{k(\tau)}\right\} \tag{4.9}
\end{equation*}
$$

where the sum over τ is over all l-valent, singly rooted star graphs. The product over v_{j} is over the vertex set of τ except for the root point. The G_{l} depend on the M_{n} and vice versa, so that we must solve Eqs. (4.8) and (4.9) self-consistently. Since G_{l} begins as $O\left(K^{l}\right)$, we can begin by replacing the M_{n} by M_{n}^{0} in Eq. (4.9) and then use those G_{l} to compute the M_{n}. These M_{n} will be good through at least order K. If they are now substituted into Eq. (4.9), new G_{l} good to one higher order in K are produced. Hence, in j iterations we can produce M_{n} which are good to the j th order in K. Given a list of one-rooted star graphs, with up to L lines, ordered by root valence, together with their symmetry numbers $s(\tau)$ and free multiplicities (the multiplicities are the same as those of their skeleton, single-line star graphs), we can compute from Eqs. (4.8) and (4.9) the expansion of the $M_{n}(i)$ to order K^{L}. These algebraic manipulations were performed using the altran ${ }^{(36)}$ system on a CDC 7600 computer. The M_{n} were first expressed in terms of the M_{n}^{0} and then, using the usual moment-cumulant relations, reexpressed in terms of the $I_{n}(\tilde{H})$. Here all \tilde{H}_{i} are taken as equal to a single \tilde{H}. Since $M_{1}(i)$ is the magnetization per site in a uniform field \tilde{H}, we can use it to find the series expansions for the susceptibility χ and $\partial^{2} \chi / \partial \tilde{H}^{2}$ by direct differentiation. The resulting series are listed in the Appendix for the linear chain (LC), plane square (PSQ), triangular (TRI), simple cubic (SC), body-centered-cubic (BCC), face-centered-cubic (FCC), hyper-simple-cubic (HCS), and hyper-body-centered-cubic (HBCC) lattices.

In order to assemble the necessary combinatorial data we must start with a list of the basic single-line, unrooted star graphs. This list has been taken from Baker et al. ${ }^{(37)}$ except for the ten-line, nine- and eight-vertex graphs (cyclotomic numbers $c=2$ and $c=3$), where the list was not complete. We are grateful to M. F. Sykes ${ }^{(38)}$ for the lists of these stars. Here there are seven theta graphs $(c=2)$ and eleven alpha, nine beta, fifteen gamma, and five delta graphs $(c=3)$. In Table I, we list the number of stars ${ }^{(39)}$ by number of lines and cyclotomic number ($c=1+l-v$, where v is the number of vertices). We have adapted the method of Baker et al. ${ }^{(37)}$ to count the free multiplicities of these stars on the eight lattices mentioned above. These data are reported elsewhere. ${ }^{(40)}$

The next step is to produce the list of multiline stars. We have done this by systematically adding extra lines to the single-line stars, and then checking to eliminate duplicates by the use of our weak-embedding-graph-on-graph-counting program. The number of such multiline stars is given in Table II. By adding a root point to the unrooted multiline stars we obtain the singly rooted multiline stars. We have added a root in all possible ways

Table I. The Number of Single-Line Stars Having $/$ Lines and Cyclotomic Index c

l											
c	1	2	3	4	5	6	7	8	9	10	Total
0	1	0	0	0	0	0	0	0	0	0	1
1			1	1	1	1	1	1	1	1	8
2					1	2	3	4	6	7	23
3						1	3	9	20	40	73
4								2	14	50	66
5									1	12	13
6										1	1
Total	1	0	1	1	2	4	7	16	42	111	185

Table II. The Number of Multiline Stars Having / Lines and Cyclotomic Index c

			1	2	3	4	5	6	7	8	9

and again used a version of our graph-on-graph-counting program to weed out duplicates. The number of such graphs, classified by root valence and number of lines, is given in Table III. These graphs and those of Table II are described in detail by Kincaid et al. ${ }^{(40)}$ This completes our brief description of the combinatorial data needed to derive the magnetization, χ, and ($\partial^{2} \chi / \partial \tilde{H}^{2}$) by the method of Eqs. (4.8) and (4.9) as described above. We remark, as is generally true in computations of this sort, that to extend this method by one more order would be substantially more work than was required to derive the first ten orders.

The altran system was also used to calculate the derivatives of χ, $\partial^{2} \chi / \partial \tilde{H}^{2}$, and μ_{2} with respect to \tilde{g}_{0}. Using these derived series and the

Table III. The Number of One-Rooted Multiline Stars with / Lines in the Set of Graphs G_{i} Such that i Lines are Incident Upon the Root Point

				l								
	1	2	3	4	5	6	7	8	9	10	Total	
G_{1}	1	0	0	0	0	0	0	0	0	0	1	
G_{2}		1	1	2	4	11	31	104	369	1439	1962	
G_{3}			1	1	3	9	28	97	371	1468	1978	
G_{4}				1	2	6	19	68	252	1020	1368	
G_{5}					1	2	8	30	123	514	678	
G_{6}						1	3	12	50	217	283	
G_{7}							1	3	15	70	89	
G_{8}								1	4	20	25	
G_{9}									1	4	5	
G_{10}										1	1	
Total	1	1	2	4	10	29	90	315	1185	4753	6390	

relation

$$
\begin{align*}
{\left[\partial I_{n}(0) / \partial \tilde{g}_{0}\right]_{I_{2}(0)}=} & I_{n+4}(0)-I_{n}(0) I_{4}(0) \\
& +\left[I_{n+2}(0)-I_{n}(0)\right]\left[I_{4}(0)-I_{6}(0)\right] /\left[I_{4}(0)-1\right] \tag{4.10}
\end{align*}
$$

we were able to produce the series required to calculate $\beta(g)$, which can be expressed as

$$
\begin{equation*}
\beta(g)=(4-d) \tilde{g}_{0}\left(\frac{\partial g}{\partial \tilde{g}_{0}}\right)_{K}\left[1+2 \frac{\tilde{g}_{0}\left(\partial \xi^{2} / \partial \tilde{g}_{0}\right)_{K}}{K\left(\partial \xi^{2} / \partial K\right)_{\tilde{g}_{0}}}\right]^{-1} \tag{4.11}
\end{equation*}
$$

The series for $\left(\partial \chi / \partial \tilde{g}_{0}\right)_{K},\left(\partial^{3} \chi / \partial \tilde{g}_{0} \partial \tilde{H}^{2}\right)_{K}$, and $\left(\partial \mu_{2} / \partial \tilde{g}_{0}\right)_{K}$ are considerably longer than the other series; they are listed in the report by Kincaid et $a l$. ${ }^{(40)}$

We have computed the correlation length ξ^{2} from the second moment definition [see Eq. (2.21)] in zero magnetic field. Since every $G_{\text {odd }}$ has at least one odd vertex (as each line has two ends), it must vanish by spin symmetry as $\tilde{H} \rightarrow 0$. The same is also true of $M_{\text {odd }}$. By the definition of ξ^{2}, we must sum over the lattice, the spin-spin correlation function times the distance squared between the two spins. According to the rules of Wortis for graphs with renormalized vertex functions, the required graphs are therefore those with less than eleven edges and with exactly two odd vertices (the two root points). Following Wortis, it is convenient to classify all such graphs into those with articulation points (nodes) and those without. We will just consider the multiline star graphs with exactly two odd vertices. These comprise a subgroup of the multiline stars reported in

Fig. 2. Doubly rooted, multiline stars with exactly two odd vertices (the root points). These stars belong to class A, since the root points are nearest neighbors.

Table II. The first few are shown in Fig. 2. It is convenient to further classify the graphs as class A, in which the root points are nearest neighbors, and class B, in which they are not. It is to be noted that all the graphs in Fig. 2 are in class A. In Table IV we list the breakdown of such graphs.

Graphs with articulation points consist only of strings of star graphs joined at the odd root points by the conservation of eveness and oddness. For terms through tenth order, the only graphs which may be repeated are those with five edges or less, i.e, just those shown in Fig. 2. We may formally write the sum of all graphs linking points i and j as ${ }^{(34)}$

$$
\begin{align*}
C(i j)= & \sum_{\epsilon, \lambda} M_{\epsilon+1}(i) I_{\epsilon \lambda}(i j) M_{\lambda+1}(j) \\
& +\sum_{\epsilon, \lambda, \mu, \nu, k} M_{\epsilon+1}(i) I_{\epsilon \lambda}(i k) M_{\lambda+\mu}(k) I_{\mu \nu}(k j) M_{\nu+1}(j)+\cdots \tag{4.12}
\end{align*}
$$

where $I_{\epsilon \lambda}(i k)$ is the sum of all star graphs (divided by their symmetry numbers) with a root of valence ϵ at i and valence λ at k. More formally we may rewrite Eq. (4.12) as

$$
\begin{equation*}
C(i j)=\left[(1-M I)^{-1}-1\right] M \tag{4.13}
\end{equation*}
$$

We emphasize at this point that the star graphs summed to form $I_{\epsilon \lambda}(i k)$ have labeled roots and so are more numerous than the unlabeled stars of Table IV. We list the number of such stars in Table V. If we separate

Table IV. The Number of Multiline Stars of Class A and Class B with I Lines and Exactly Two Odd, Unlabeled Root Points

				l							
	1	2	3	4	5	6	7	8	9	10	Total
A	1	0	1	1	4	5	17	36	117	311	493
B	0	0	0	0	0	2	4	16	53	199	274
Total	1	0	1	1	4	7	21	52	170	510	767

Table V. The Number of Class A and Class B Multiline Stars with l Lines and Exactly Two Odd, Labeled Root Points

			l								
	1	2	3	4	5	6	7	8	9	10	Total
A	1	0	1	1	4	6	19	45	142	411	630
B	0	0	0	0	0	2	5	24	88	350	469
Total	1	0	1	1	4	8	24	69	230	761	1099

explicitly the star graphs into class A and B , we notice that the smallest class B graph has six edges and so is not repeated through tenth order. Thus, exact through tenth order we may rewrite Eq. (4.13) as

$$
\begin{align*}
C(i j) & =\left[\left(1-M I^{A}-M I^{B}\right)^{-1}-1\right] M \\
& =\left[\left(1-M I^{A}\right)^{-1}-1\right] M+\left(1-M I^{A}\right)^{-1} M I^{B}\left(1-M I^{A}\right)^{-1} M \tag{4.14}
\end{align*}
$$

We are now in a position to reduce the contribution of class A alone,

$$
\begin{equation*}
\mu_{2}^{A}=\sum_{\mathbf{j} \neq 0}^{N-1}\left(\frac{\mathbf{r}_{0 \mathbf{j}}}{a}\right)^{2} C^{A}(0 \mathbf{j}) \tag{4.15}
\end{equation*}
$$

to a simple calculation. Through tenth order the matrix I^{A} may be taken as a five by five parametric matrix labeled by ($1,3,5,7,9$). Its entries are constructed from the sums of powers of K and of products of renormalized vertex functions [Eq. (4.8)], as computed in the first part of this section, which are appropriate to the star graphs involved. Now, insofar as summation over lattice sites is concerned, since we are using the free multiplicities, the free multiplicity divided by the symmetry number of a string of star graphs is just the product of the respective free multiplicities divided by the symmetry number; we may simply attach this factor to each star graph used in the construction of the I^{A} matrix. To obtain the correct contribution to μ_{2} we define the matrix

$$
\begin{equation*}
V_{\epsilon \mu}=\sum_{\lambda=1, \mathrm{odd}}^{9} I_{\epsilon \lambda} M_{\lambda+\mu} \tag{4.16}
\end{equation*}
$$

for class A and the vectors

$$
\mathbf{m}=\left(\begin{array}{l}
M_{2} \tag{4.17}\\
M_{4} \\
M_{6} \\
M_{8} \\
M_{10}
\end{array}\right), \quad \mathbf{V}_{1}=\left(\begin{array}{c}
V_{1,1} \\
V_{3,1} \\
V_{5,1} \\
V_{7,1} \\
V_{9,1}
\end{array}\right), \quad \mathbf{v}_{i+1}=V \mathbf{v}_{i}
$$

in terms of the renormalized functions M_{n}. Then

$$
\begin{equation*}
\mu_{2}^{A}=\sum_{i=1}^{n} c_{i} \mathbf{m} \cdot \mathbf{v}_{i} \tag{4.18}
\end{equation*}
$$

follows by a short calculation, where c_{i} is the mean square length of an n-step random walk on the lattice of interest. Following Domb, ${ }^{(41)}$ we can compute that

$$
\begin{equation*}
c_{j}=j q^{j} \tag{4.19}
\end{equation*}
$$

where q is the lattice coordination number. Again the necessary algebra for the contributions of class A to μ_{2} has been done using the altran system. ${ }^{(36)}$

To obtain the contributions from a graph of class B, we must first compute directly the $\sum_{j} r_{i j}^{2}$ for \mathbf{i} and \mathbf{j} the two, odd-valence roots for those graphs of class B. To include the class A pre- and postfactors determined from Eq. (4.14), we make use of the following observation. If we add a single line $\overline{j k}$ to site j (a root) of any fixed configuration of a graph G on a lattice, then

$$
\begin{align*}
\sum_{\mathbf{k}}\left(\mathbf{r}_{\mathbf{i j}}+\mathbf{r}_{\mathbf{j} \mathbf{k}}\right)^{2} & =\sum_{\mathbf{k}}\left(\mathbf{r}_{\mathbf{i j}}\right)^{2}+2 \sum_{\mathbf{k}} \mathbf{r}_{\mathbf{i} \mathbf{j}} \cdot \mathbf{r}_{\mathbf{j} \mathbf{k}}+\sum_{\mathbf{k}}\left(\mathbf{r}_{\mathbf{j} \mathbf{k}}\right)^{2} \\
& =q\left(\mathbf{r}_{\mathbf{i j}}\right)^{2}+0+q a^{2} \\
& =q\left[\left(\mathbf{r}_{\mathbf{i j}}\right)^{2}+1\right] \tag{4.20}
\end{align*}
$$

where the zero follows by lattice symmetry, q is again the lattice coordination number, and a is the lattice spacing, which for present purposes can be taken as unity. Now, if we sum (4.20) over all configurations of G we obtain

$$
\begin{equation*}
\sum_{G} \sum_{\mathbf{k}}\left(\mathbf{r}_{\mathbf{i j}}+\mathbf{r}_{\mathbf{j} \mathbf{k}}\right)^{2}=q\left[c_{G}+M_{f}(G)\right] \tag{4.21}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{G}=\sum_{G}\left(\mathrm{r}_{\mathrm{ij}}\right)^{2} \tag{4.22}
\end{equation*}
$$

and Σ_{G} is the sum over the free embeddings of G on the lattice. This calculation is easily extended to add an arbitrary number of class A decorations (in a string) to one or both roots of the class B graph. The result, for the addition of n class A graphs τ_{i}, is

$$
\begin{equation*}
\sum \mathrm{r}_{12}^{2}=\left[\prod_{i=1}^{n} \frac{M_{f}\left(\tau_{i}\right)}{s_{l}\left(\tau_{i}\right)}\right]\left[c_{G}+n M_{f}(G)\right] \tag{4.23}
\end{equation*}
$$

where $\mathbf{1}$ and $\mathbf{2}$ are the two odd vertices of the resultant string and $s_{l}\left(\tau_{i}\right)$ is the symmetry number of τ_{i} with its two roots labeled.

Since, through tenth order, only 13 decorations are possible on B graphs with six edges (for graphs with seven edges only six, for graphs with eight edges only three, for graphs with nine edges only two, and, of course, none for graphs with ten edges), there are a total of 654 separate contributions from the class B graphs to be obtained (see Table V), and the only additional combinatorial information needed is the c_{G} for the class B graphs.

All the methods and data discussed in this section are fully reported elsewhere. ${ }^{(40)}$ The zero-field series for $\chi, \partial^{2} \chi / \partial \tilde{H}^{2}$, and μ_{2} are given in the Appendix.

Finally, we report here the new terms which we have added to the known spin-1/2 Ising model series. We have added for $\mu_{2}\left(=2 d \chi \xi^{2}\right)$ on the triangular lattice ${ }^{7}$

$$
\begin{equation*}
+5765546236416 K^{9} / 9!+271060330512384 K^{10} / 10! \tag{4.24}
\end{equation*}
$$

We have added for the $\partial^{2} \chi / \partial \tilde{H}^{2}$ series the terms

$$
\begin{equation*}
-298834578777071616 K^{9} / 9!-39510128291537117184 K^{10} / 10! \tag{4.25}
\end{equation*}
$$

on the FCC lattice, ${ }^{(43)}$ and

$$
\begin{equation*}
-601493660302278656 K^{10} / 10! \tag{4.26}
\end{equation*}
$$

on the HSC lattice (this term agrees with the new results of Gaunt et al. ${ }^{(12)}$) Finally, we have added the entire series for the HBCC lattice:

$$
\begin{align*}
-2 & -128 K-9792 K^{2} / 2!-886784 K^{3} / 3! \\
& -92722944 K^{4} / 4!-11014965248 K^{5} / 5! \\
& -1465369976832 K^{6} / 6! \\
& -215937597784064 K^{7} / 7! \tag{4.27}\\
& -34916329300783104 K^{8} / 8! \\
& -6147843514432913408 K^{9} / 9! \\
& -1170908043876450435072 K^{10} / 10!\cdots
\end{align*}
$$

5. LARGE- AND SMALL- \tilde{g}_{0} BEHAVIOR

Some aspects of the large- and small- \tilde{g}_{0} behavior of various quantities can be obtained without extensive numerical calculations. We begin this section by first considering how the moments $I_{n}(0)$ and $\tilde{A}\left(\tilde{g}_{0}\right)$ depend upon \tilde{g}_{0}; we then go on to discuss the behavior of $\chi, \partial^{2} \chi / \partial \tilde{H}^{2}, \xi^{2}, g$, and $\beta(g)$.

In order to use the series derived in the previous section and tabulated

[^3]in the Appendix, it is necessary to evaluate with high precision the moment integrals $I_{n}(0)$ defined by Eq. (2.18). The direct numerical evaluation of these integrals presents no problem as long as \tilde{g}_{0} is not too large. In this latter region, however, it is desirable to use an expansion in powers of \tilde{g}_{0}^{-1} to obtain the results. Before we discuss this expansion we will point out a few simple properties of these moment integrals. First let
\[

$$
\begin{equation*}
J_{n}=\int_{0}^{\infty} d x x^{2 n} \exp \left(-\tilde{g}_{0} x^{4}-\tilde{A} x^{2}\right) \tag{5.1}
\end{equation*}
$$

\]

so that

$$
\begin{equation*}
I_{2 n}(0)=J_{n} / J_{0} \tag{5.2}
\end{equation*}
$$

If we integrate by parts we find, using Eq. (5.1), that

$$
\begin{equation*}
J_{n}=4 \tilde{g}_{0} J_{n+2} /(2 n+1)+2 \tilde{A} J_{n+1} /(2 n+1), \quad n>-1 / 2 \tag{5.3}
\end{equation*}
$$

Thus we obtain the recursion relation

$$
\begin{equation*}
R_{n+1}=-\tilde{A} /\left(2 \tilde{g}_{0}\right)+(2 n+1) /\left(4 \tilde{g}_{0} R_{n}\right) \tag{5.4}
\end{equation*}
$$

where $R_{n}=J_{n+1} / J_{n}$. If $\tilde{A} \leqslant 0$, then (5.4) can be used to recur upward in n, starting from $\mathcal{A}\left(\tilde{g}_{0}\right)$ and $R_{0}=1$. If, on the other hand, $\tilde{A}>0$, then cancellation can occur between the terms on the right-hand side of Eq. (5.4). This cancellation can be quite significant as $\tilde{g}_{0} \rightarrow 0$. Alternatively, we can rewrite Eq. (5.4) as

$$
\begin{equation*}
R_{n}=(2 n+1) /\left(2 \tilde{A}+4 \tilde{g}_{0} R_{n+1}\right) \tag{5.5}
\end{equation*}
$$

which is quite stable for downward recursion in n when $\tilde{A}>0$. If one starts with the asymptotic guess

$$
\begin{equation*}
R_{n} \sim \operatorname{Max}\left[\left(n /\left(2 \tilde{g}_{0}\right)\right)^{1 / 2}, \quad(2 n+1) /(2 \tilde{A})\right] \tag{5.6}
\end{equation*}
$$

for large n and the result that $R_{0}\left(R_{n}\right)$ is monotonic increasing or decreasing as n is even or odd, one can rapidly obtain from $R_{0}=1$ and $\tilde{A}\left(\tilde{g}_{0}\right)$ the set of R_{n} from Eq. (5.6) to the desired accuracy by a set of successive approximations to $R_{n_{\text {max }}}$, where $n_{\max }$ is the largest value of n required. Since

$$
\begin{equation*}
I_{2 n}(0)=\prod_{j=0}^{n} R_{j} \tag{5.7}
\end{equation*}
$$

this analysis reduces the numerical problem to the evaluation of $\tilde{A}\left(\tilde{g}_{0}\right)$, plus some other well-defined calculations.

To obtain $\tilde{A}\left(\tilde{g}_{0}\right)$ we first discuss the problem of expansions near $\tilde{g}_{0}=0$ and ∞. We follow the analysis of Wehner and Baeriswyl ${ }^{(44)}$ of the function

$$
\begin{equation*}
Z(p)=\int_{-\infty}^{\infty} d y \exp \left(-2 p y^{2}-y^{4}\right) \tag{5.8}
\end{equation*}
$$

First, however, we remark that one can easily solve for the crossover value
of \tilde{g}_{0} from $R_{0}=1$ and Eq. (5.1) as

$$
\begin{equation*}
\tilde{g}_{0}(\tilde{A}=0)=[\Gamma(3 / 4) / \Gamma(1 / 4)]^{2} \simeq 0.1142366452 \tag{5.9}
\end{equation*}
$$

Now in the range $\tilde{A}>0$, we can use the change of variable $\tilde{g}_{0} x^{4}=y^{4}$, which implies that $p \rightarrow+\infty$ as $\tilde{g}_{0} \rightarrow 0$. Wehner and Baeriswyl give in this case the result

$$
\begin{equation*}
Z(p)=(\pi / 2 p)^{1 / 2}{ }_{2} F_{0}\left(1 / 4,3 / 4 ;-1 / p^{2}\right) \tag{5.10}
\end{equation*}
$$

where ${ }_{2} F_{0}$ is a confluent hypergeometric function whose expansion is only asymptotic. This result leads directly to the equation

$$
\begin{equation*}
\tilde{A}={ }_{2} F_{0}\left(5 / 4,7 / 4 ;-4 \tilde{g}_{0} / \tilde{A}^{2}\right) /\left[2{ }_{2} F_{0}\left(1 / 4,3 / 4 ;-4 \tilde{g}_{0} / \tilde{A}^{2}\right)\right] \tag{5.11}
\end{equation*}
$$

which can be used to solve for the series expansion of $\tilde{A}\left(\tilde{g}_{0}\right)$

$$
\begin{equation*}
\tilde{A}=1 / 2-6 \tilde{g}_{0}+48 \tilde{g}_{0}^{2}+O\left(\tilde{g}_{0}^{3}\right) \tag{5.12}
\end{equation*}
$$

In the case $\tilde{A}<0$ we see that the corresponding limit is $p \rightarrow-\infty$. Here Wehner and Baeriswyl give

$$
\begin{equation*}
Z(p)=(\pi /-p)^{1 / 2} \exp \left(p^{2}\right)_{2} F_{0}\left(1 / 4,3 / 4 ; 1 / p^{2}\right) \tag{5.13}
\end{equation*}
$$

Again, this result leads to an equation

$$
\begin{align*}
\tilde{A}= & -2 \tilde{g}_{0}+\tilde{g}_{0} / \tilde{A} \\
& +3\left(\tilde{g}_{0}^{2} / \tilde{A}^{3}\right)_{2} F_{0}\left(5 / 4,7 / 4 ; 4 \tilde{g}_{0} / \tilde{A}^{2}\right) /{ }_{2} F_{0}\left(1 / 4,3 / 4 ; 4 \tilde{g}_{0} / \tilde{A}^{2}\right) \tag{5.14}
\end{align*}
$$

which can be used to solve for the series expansion of $\tilde{A}\left(\tilde{g}_{0}\right)$ in powers of \tilde{g}_{0}^{-1}. We find

$$
\begin{align*}
\tilde{A}= & -2 \tilde{g}_{0}-1 / 2-(1 / 4) \tilde{g}_{0}^{-1}-(7 / 16) \tilde{g}_{0}^{-2} \\
& -(83 / 64) \tilde{g}_{0}^{-3}-(1357 / 256) \tilde{g}_{0}^{-4} \\
& -(27933 / 1024) \tilde{g}_{0}^{-5}-(688971 / 4096) \tilde{g}_{0}^{-6} \\
& -(19746759 / 16384) \tilde{g}_{0}^{-7}+O\left(\tilde{g}_{0}^{-8}\right) \tag{5.15}
\end{align*}
$$

As a practical matter we have in fact used the expansions (5.15) for \tilde{A} when \tilde{g}_{0} is near ∞ and used an accelerated binary search procedure on the integral definition otherwise. Once a reliable value of \tilde{A} is obtained the computation of the moments is not hard using Eqs. (5.4), (5.5), and (5.7); we have, however, verified all values of the moments by direct integration except for \tilde{g}_{0} very near ∞.

It is interesting to consider as well the expansions of the moments $I_{2 n}(0)$ in powers of \tilde{g}_{0} and \tilde{g}_{0}^{-1}. First, for small \tilde{g} we can compute using Eq. (5.12) that

$$
\begin{equation*}
I_{2 n}(0)=1 \cdot 3 \cdot 5 \cdots(2 n-1)\left[1-4 n(n-1) \tilde{g}_{0}\right]+O\left(\tilde{g}_{0}^{2}\right) \tag{5.16}
\end{equation*}
$$

From Eqs. (5.16) and (3.5) we compute that

$$
\begin{align*}
M_{2}^{0}(0) & =1.0, \quad M_{4}^{0}(0)=-4!\tilde{g}_{0}+O\left(\tilde{g}_{0}^{2}\right) \\
M_{2 n}^{0}(0) & =O\left(\tilde{g}_{0}^{2}\right), \quad n \geqslant 3 \tag{5.17}
\end{align*}
$$

Hence in the high-temperature expansions, to compute a thermodynamic quantity to order \tilde{g}_{0} we can ignore all vertices at which more than four lines meet, including in our count the field derivatives as lines. For example, we show in Fig. 3 the topologically distinct graphs which contribute to $\partial^{2} \chi / \partial \tilde{H}^{2}$ through order K^{4} and \tilde{g}_{0}. It is not difficult from considerations of this type and Eq. (3.20) to deduce

$$
\begin{gather*}
\chi=1 /(1-q K)+O\left(\tilde{g}_{0}\right), \quad \xi^{2}=q K /[2 d(1-q K)]+O\left(\tilde{g}_{0}\right) \\
\left(\partial^{2} \chi / \partial \tilde{H}^{2}\right)=-4!\tilde{g}_{0} /(1-q K)^{4}+O\left(\tilde{g}_{0}^{2}\right) \tag{5.18}
\end{gather*}
$$

By combining Eqs. (2.17), (2.22), and (5.18) we may rewrite Eq. (2.25) as

$$
\begin{equation*}
g_{R}=g_{0}+O\left(g_{0}^{2}\right) \tag{5.19}
\end{equation*}
$$

independent of K or lattice. This formula is in line with the idea that g_{R} is a renormalized version of g_{0}.

To consider the expansion in powers of \tilde{g}_{0}^{-1} we return to the recursion formulas for the moments and their ratios. (See Caginalp, Constantinescu, and Bender et al. ${ }^{(27)}$ for different approaches.) Using Eqs. (5.4), (5.15), and $R_{0}=1$, we deduce that

$$
\begin{equation*}
R_{n+1}=1+(n+1) / 2 \tilde{g}_{0}+O\left(\tilde{g}^{-2}\right) \tag{5.20}
\end{equation*}
$$

so that

$$
\begin{equation*}
I_{2 n}(0)=1+n(n-1) / 4 \tilde{g}_{0}+O\left(\tilde{g}_{0}^{-2}\right) \tag{5.21}
\end{equation*}
$$

It is not difficult to extend these series to higher orders in \tilde{g}_{0}^{-1}. Plainly, by virtue of the fact that the coefficients of every power of K in the hightemperature series listed in the Appendix is a polynomial in the $I_{2 n}(0)$, it follows that algebraic substitution of Eq. (5.21) into these series leads to the spin-1/2 Ising model term plus correction terms containing powers of \tilde{g}_{0}^{-1}.

Fig. 3. The topologically distinct graphs that contribute to $\partial^{2} \chi / \partial \tilde{H}^{2}$ through order K^{4} and \tilde{g}_{0}.

Since the high-temperature series are convergent for all temperatures above some temperature $\left[\geqslant T_{c}\left(\tilde{g}_{0}\right)\right]$, we can use analytic continuation to extend the following result to all $T>T_{c}$ for the spin-1/2 Ising model. A direct analysis of Eq. (3.11) shows that term by term

$$
\begin{equation*}
\lim _{\tilde{g}_{0} \rightarrow \infty} \beta\left(g, T>T_{c}\right) \propto \lim _{\tilde{g}_{0} \rightarrow \infty} \tilde{g}_{0}^{-1}=0 \tag{5.22}
\end{equation*}
$$

Thus the β function necessarily goes smoothly to zero for any fixed correlation length as the bare coupling constant g_{0} goes to infinity. Thus

$$
\begin{equation*}
\beta\left(g_{0}=\infty, \xi^{2}\right) \equiv 0 \tag{5.23}
\end{equation*}
$$

This result is consistent with the idea that $g_{0}=\infty$ corresponds to the renormalization-group fixed point $\left[\beta\left(g^{*}\right)=0\right]$ and the idea that the approach as $\xi^{2} \rightarrow \infty$ is a smooth one. However, this result certainly does not preclude the possibility that Schrader monotonicity fails and that this zero of the β function is not the renormalization group zero. Clearly, if $\partial g / \partial\left(\tilde{g}_{0}^{-1}\right)<0$ near $\xi^{2}=\infty$, then Schrader monotonicity will have had to have failed. Thus a study of the possibility of a change of sign of the first expansion coefficient of g in powers of \tilde{g}_{0}^{-1} can reveal the failure of Schrader monotonicity in a way that is likely to be numerically more satisfactory than analyzing the asymptotic behavior at the critical point.

We remark that Eq. (5.23) shows that the heuristic underpinnings of efforts to "turn" the direction of the derivatives, such as that of Nickel and Sharp, ${ }^{(13)}$ need more careful discussion since their analogous function is manifestly not identically zero for the spin-1/2 Ising model as is the usual β function.

6. THE CORRELATION-LENGTH SERIES

In order to analyze effectively the series data that we have derived it is desirable to utilize any exact information that is available. In particular, exact knowledge of the critical point location is of great benefit in the study of critical indices. In general we do not have such exact knowledge of the critical temperature for the models we are studying, but we do, of course, for the correlation length: at the critical point the correlation length ξ is infinite. Since the correlation length series begins

$$
\begin{equation*}
\xi^{2}(K)=(q / 2 d) K+O\left(K^{2}\right) \tag{6.1}
\end{equation*}
$$

and $\xi^{2}(K)$ appears to be a monotonic function between $K=0$ and $K=K_{c}$, it is possible, for a fixed value of \tilde{g}_{0}, to revert the series $\xi^{2}(K)$ to give

$$
\begin{equation*}
K=\sum_{i=1}^{\infty} t_{i} \xi^{2 i} \tag{6.2}
\end{equation*}
$$

This series can then be substituted into $\chi(K)$ and $\left(\partial^{2} \chi / \partial \tilde{H}^{2}\right)(K)$ to reexpress these series as power series in ξ^{2}.

A further technical device is to transform the variable ξ^{2} so that the critical point $\xi^{2}=\infty$ is mapped into a finite point. This mapping is conveniently accomplished by the Euler transformation

$$
\begin{equation*}
x=A \xi^{2} /\left(1+A \xi^{2}\right) \tag{6.3}
\end{equation*}
$$

Clearly, when $\xi^{2} \rightarrow \infty, x \rightarrow 1$. This transformation has a parameter A at our disposal that determines the point $\left(\xi^{2}=-A^{-1}\right)$ in the ξ^{2} plane that is mapped into ∞ in the x plane. In order to choose A in the most helpful manner, we have analyzed the singularity structure of $g[E q$. (2.25)] in the ξ^{2} plane by means of $d \log$ Padé approximants. ${ }^{(45)}$ The $[L / M]$ Padé approximant to a function $f(x)$ is

$$
\begin{equation*}
[L / M]=P_{L}(x) / Q_{m}(x) \tag{6.4}
\end{equation*}
$$

where P_{L} and Q_{M} are polynomials of degrees L and M, respectively. The coefficients are determined by the equations

$$
\begin{equation*}
Q_{M}(x) f(x)-P_{L}(x)=O\left(x^{L+M+1}\right), \quad Q_{M}(0)=1.0 \tag{6.5}
\end{equation*}
$$

By their nature they approximate well a polar singularity and by clustering poles and zeros they can approximate the behavior near more complex types of singularities. If $f(x)$ has a singularity of the form $\left(x-x_{0}\right)^{-\psi}$, then the logarithmic derivative of f has a simple pole at $x=x_{0}$ with residue $-\psi$. Consequently, the $d \log$ Padé approximants form a useful tool to survey the complex plane for singularities. In particular, we note that the $[M-2 / M]$ approximants to $d(\ln f) / d x$ are invariant under the transformation on f defined by Eq. (6.3). As a result of this survey we find that for $A=2(d+1)$ the transformation moves $\xi^{2}=\infty$ to $x=1$ and generally moves all the other singularities outside the unit circle, which is a desirable manipulation for methods of analysis for series data that are not completely invariant under such transformations.

Once the series for

$$
\begin{equation*}
g=\frac{-v \frac{\partial^{2} \chi}{\partial \tilde{H}^{2}}\left(\xi^{2}(x)\right)}{a^{d} \chi^{2}\left(\xi^{2}(x)\right)\left[\xi^{2}(x)\right]^{d / 2}} \tag{6.6}
\end{equation*}
$$

has been produced, the next step is to analyze its behavior in the neighborhood of $x=1$. We begin by investigating the possibility of a confluence of singularities. Our method of analysis is due to Baker and Hunter. ${ }^{(46)}$ Suppose that

$$
\begin{equation*}
f(x) \simeq \sum_{n=1}^{\infty} A_{n}(1-x)^{\alpha_{n}}, \quad \alpha_{n}<\alpha_{n+1} \tag{6.7}
\end{equation*}
$$

If $x=1-e^{-y}$, then from

$$
\begin{equation*}
w(y)=f\left(1-e^{-y}\right)=\sum_{m=0}^{\infty} w_{m} y^{m} \tag{6.8}
\end{equation*}
$$

we can form the auxiliary function

$$
\begin{equation*}
W(y)=\sum_{m=0}^{\infty} w_{m}(m!) y^{m}=\sum_{n=1}^{\infty} \frac{A_{n}}{1-\alpha_{n} y} \tag{6.9}
\end{equation*}
$$

Clearly, Padé approximants to $W(y)$ reveal the amplitudes and index of such confluent singularities.

We have performed this type of analysis on the function $Q(x)$ defined by

$$
\begin{equation*}
Q(x)=\left(\partial^{2} \chi / \partial \tilde{H}^{2}\right) / \chi^{2} \tag{6.10}
\end{equation*}
$$

with χ given by Eq. (6.3). For small $\tilde{g}_{0}\left(\lesssim 10^{-3}\right)$, Gaussian model behavior dominates on all lattices; we find that

$$
\begin{equation*}
Q(x) \sim \frac{Q_{0}}{(1-x)^{p}}\left[1+Q_{1}(1-x)+\cdots\right] \tag{6.11}
\end{equation*}
$$

with $p=2$ (i.e., only "analytic" corrections are present). On the one- and four-dimensional lattices, $Q(x)$ maintains the structure shown in Eq. (6.11) except that the index $p=2$, for \tilde{g}_{0} near zero, decreases to approximately 0.5 and 1.7 , respectively, in the Ising limit $\tilde{g}_{0}=\infty$. The large- \tilde{g}_{0} behavior of $Q(x)$ on the two- and three-dimensional lattices also takes the form of Eq. (6.11); however, when $\tilde{g}_{0} \sim 0.1$ the possibility of a significant confluence cannot be ruled out. The Padé analysis did not appear to be stable in the neighborhood of $\tilde{g}_{0}=0.1$, so that we do not have a clear picture of the confluent structure there. We conclude from our analysis that there is no troublesome confluence near the Ising limit and we will proceed with our series evaluation by assuming that there is only one dominant singularity at $x=1$.

Having checked for possible confluent singularities, we finally come to the numerical aspects of this work, i.e., the calculation of $g\left(\tilde{g}_{0}, \xi^{2}\right)$. The main technique we shall use is the integral approximant method. ${ }^{(47,48)}$ In this method a set of three polynomials is determined from

$$
\begin{equation*}
Q_{M}(x)(d f / d x)+P_{L}(x) f(x)+R_{N}(x)=O\left(x^{L+M+N+2}\right) \tag{6.12}
\end{equation*}
$$

and the $[N / L ; M]$ integral approximant is determined by integrating Eq. (6.12) with the right-hand side set equal to zero. With some exceptions ${ }^{(47)}$ this solution has the structure

$$
\begin{equation*}
[N / L ; M] \approx A(x)\left(x-x_{i}\right)^{-\gamma_{i}}+B(x) \tag{6.13}
\end{equation*}
$$

near the roots x_{i} of $Q_{M}(x)$. The functions A and B are regular near the x_{i}. Solutions of this nature allow us to compute an accurate approximation to $\xi^{d} g$ near $x=1$ which reproduces the expected range of behavior near $x=1$. The imposition of the condition that there be a singularity at $x=1$ is easily accomplished by the addition of a linear equation between the polynomial coefficients

$$
\begin{equation*}
Q_{M}(1)=0 \tag{6.14}
\end{equation*}
$$

The description of the results of the analysis of our data by this method is given in the next section.

The bare coupling constant g_{0} defined by Eq. (2.17) is calculated using values of $K\left(\xi^{2}\right)$ obtained from the [5/5] Pade to the series given in Eq. (6.2). This procedure is straightforward and fast from a computational point of view, but we do not expect that this is the most accurate method for obtaining estimates of K in the limit $\xi^{2} \rightarrow \infty$, i.e., K_{c}. (Experience on other models suggests that K_{c} is most accurately obtained from an analysis of the susceptibility series.) We emphasize, however, that the possible errors in our estimates of g_{0} will not have any significant effect on the analysis of $g\left(g_{0}, \xi^{2}\right)$ that follows.

7. THE RENORMALIZED COUPLING CONSTANT

In this section we present our numerical analysis of the dependence of g on g_{0}, \tilde{g}_{0}, and ξ^{2}. In previous sections we have described the methods by which series for g and g_{0} in terms of ξ^{2} are generated. The coefficients of these series are determined by a choice of the parameter \tilde{g}_{0}. For any given lattice a table of g and g_{0} for various choices of \tilde{g}_{0} and ξ^{2} can be constructed. The study of this table, for the eight lattices we consider, is given below. The strong coupling region $g_{0} \rightarrow \infty, \xi^{2} \rightarrow \infty$ is of special interest (see Section 3) and we note that in this limit it is more illuminating to study the dependence of g on \tilde{g}_{0} instead of g_{0}. We choose \tilde{g}_{0} as our important variable in the strong coupling limit rather than the customary ${ }^{(49)}$ choice of $g_{0} \xi^{d-4}$ because we have direct calculational control over \tilde{g}_{0} and we bypass the problem of having to obtain precise values for $K\left(\tilde{g}_{0}, \xi^{2}\right)$.

We note that lattices of the same dimensionality lead to quite similar estimates of g and g_{0}. The apparent errors (defined below) in the calculated values of g, however, seem to vary considerably from lattice to lattice (with \tilde{g}_{0} and ξ^{2} fixed). The body-centered cubic family of lattices (LC, PSQ, BCC, and HBCC) was found to give the best results. The approximants for g on the triangular lattice exhibit so many interfering singularities that we were unable to obtain any meaningful estimates for g.

The values of $g\left(\tilde{g}_{0}, \xi^{2}\right)$ cited here represent the simple average value of g obtained from those integral approximants $[N / L ; M]$, where $N+L+$ $M+1=10(N, L, M \geqslant 1)$, that have no singularities in the closed interval $-0.5 \leqslant x \leqslant 1.1$ except the expected singularity at $x=1$. [Recall x $=A \xi^{2} /\left(1+A \xi^{2}\right), A=2(d+1)$.] The apparent error assigned to this average value of g was obtained using the method of Hunter and Baker. ${ }^{(45)}$ In our case this method is a simple one: let g_{p}^{\prime} and $g_{p}^{\prime \prime}$ be the smallest and largest values of g obtained from the integral approximants for which $N+L+M+1=p$; the apparent error is $\max \mid\left\{g_{9}^{\prime}\right.$ or $\left.g_{9}^{\prime \prime}\right\}-\left\{g_{10}^{\prime}\right.$ or $\left.g_{10}^{\prime \prime}\right\} \mid$.

Many of the approximants used to calculate g for two- and threedimensional lattices were often flawed in the sense that they had additional singularities within the interval $[0.5,1.1]$. The presence of these singularities was a problem for values of $\tilde{g}_{0} \leqq 0.5$. The region around $\tilde{g}_{0}=0.1$, where the spin density F changes from Gaussian-like to Ising-like, was especially troublesome. We cannot explain conclusively why the approximants are so unstable in this region. However, one obvious possibility is that our series do not extend to high enough order in ξ^{2} to adequately represent g for large ξ^{2} when $\tilde{g}_{0} \leqq 0.5$; another possibility is that there is a confluence of singularities in the region around $\tilde{g}_{0}=0.1$. The problems described above were not evident on the four-dimensional lattices.

In these troublesome regions of large apparent error, we find that $g \rightarrow \infty$ as $\xi^{2} \rightarrow \infty$ for fixed \tilde{g}_{0}. This behavior implies a violation of Eq. (2.30). Therefore, in those cases where this type of spurious behavior is obtained, we have substituted an unproven, but compelling, procedure for estimating g; it is based on our observation that for the small values of g_{0} in all cases where very stable approximants to g are obtained, $g\left(\xi^{2}\right)$ is a monotonic decreasing function for fixed g_{0} :

For $\tilde{g}_{0} \leqq 0.7, g\left(\xi^{2}\right)$ is a monotonic decreasing function for fixed g_{0}. When we observe that $g\left(\xi^{2}\right)$ begins to increase for $\xi^{2}>\xi_{m}^{2}$ then we set $g\left(\xi^{2}\right)=g\left(\xi_{m}^{2}\right)$. In this way we can obtain upper bounds for the curves $g\left(g_{0}\right)$ or $g\left(\tilde{g}_{0}\right)$ in the limit $\xi^{2} \rightarrow \infty$. Curves obtained in this manner are drawn with a dashed line.

7.1. $d=1$ (LC)

In Figs. 4 and 5 we have drawn g as a function of g_{0} and \tilde{g}_{0} for several values of ξ^{2}. The curves show that g is a monotonic increasing function of g_{0} and \tilde{g}_{0}, as expected from the work of Isaacson ${ }^{(50)}$ and Marchesin. ${ }^{(51)}$ The thick curve represents our estimate of the $\xi^{2} \rightarrow \infty$ limit. This limiting curve is in agreement with the numerical calculations of Marchesin. ${ }^{(51)}$ It is clear from Fig. 4 that $g\left(\xi^{2}\right)$ for fixed g_{0} is monotonic decreasing. We also note that the [2/2] Padé approximant to $d(\ln Q) / d x$ appears to be exact

Fig. 4. The renormalized coupling constant g as a function of the bare coupling constant g_{0} for several values of the correlation length ξ on the linear chain lattice. The thick curve represents our estimate of $g\left(g_{0}\right)$ in the limit $\xi^{2} \rightarrow \infty$.

Fig. 5. The renormalized coupling constant g as a function of \tilde{g}_{0} for several values of the correlation length ξ on the linear chain lattice. The thick curve represents our estimate of $g\left(\tilde{g}_{0}\right)$ in the limit $\xi^{2} \rightarrow \infty$.
when $\tilde{g}_{0}=\infty$. [Q is defined in Eq. (6.10).] We find that $g\left(\tilde{g}_{0}=\infty, \xi^{2}=\infty\right)$ $=6.0$. ${ }^{8}$

7.2. $d=2$ (PSQ)

Here, as for the case $d=1, g\left(g_{0}\right)$ and $g\left(\tilde{g}_{0}\right)$ with ξ^{2} fixed are smooth, monotonic increasing functions of g_{0} and \tilde{g}_{0}, respectively. (See Figs. 6 and 7.) For large g_{0} and ξ, the curve becomes flat [i.e., $\left(\partial g / \partial g_{0}\right)_{\xi^{2}} \rightarrow 0$ as $g_{0}, \xi^{2} \rightarrow \infty$]. This behavior is more easily indentified when g is plotted against \tilde{g}_{0} as in Fig. 7. In the parlance of the renormalization group and field theory methods, the strong coupling limit $g_{0} \rightarrow \infty$ commutes with the limit $\xi^{2} \rightarrow \infty$; this double limit represents a fixed point of the field theory. ${ }^{(53)}$ Our estimate for the fixed point coupling constant g^{*} is 14.5 ± 0.2 (PSQ); it is consistent with the calculations of Baker ${ }^{(11)}$ and Baker et al. ${ }^{(32)}$

A unique value of g^{*} indicates that all continuous-spin models, of the type defined by Eqs. (2.15) and (2.16), have critical point properties that are described by a single field theory with renormalized coupling constant g^{*}.
${ }^{8}$ Bender et al. ${ }^{(52)}$ have shown that 6.0 is in fact the exact result.

Fig. 6. The renormalized coupling constant g as a function of the bare coupling constant g_{0} for several values of the correlation length ξ on the plane square lattice. The thick curve represents our estimate of $g\left(g_{0}\right)$ in the limit $\xi^{2} \rightarrow \infty$.

Fig. 7. The renormalized coupling constant g as a function of \tilde{g}_{0} for several values of the correlation length ξ on the plane square lattice. The thick curve represents our estimate of $g\left(\tilde{g}_{0}\right)$ in the limit $\xi^{2} \rightarrow \infty$.

Fig. 8. Contours of the renormalized coupling constant g in the $\hat{\xi}_{1}, \bar{G}_{0}$ plane for the plane square lattice. Here $\hat{\xi}_{1}=\xi^{2} /\left(1+\xi^{2}\right)$ and $\bar{G}_{0}=g_{0} /\left(240+g_{0}\right)$. The thick curve represents $g^{*}=14.5$.

Fig. 9. Contours of the renormalized coupling constant g in the $\hat{\xi}_{1}, \tilde{G}_{0}$ plane for the plane square lattice. Here $\hat{\xi}_{1}=\xi_{\xi}^{2} /\left(1+\xi^{2}\right)$ and $\tilde{G}_{0}=\tilde{g}_{0} /\left(1+\tilde{g}_{0}\right)$. The thick curve represents g^{*} $=14.5$.

That is, the set of continuous-spin models that we have considered all belong to the same "universality class" ${ }^{9}$ (except the $\tilde{g}_{0}=0$ case).

Note that here, as for $d=1, g\left(\xi^{2}\right)$ with g_{0} fixed appears to be a monotonic decreasing function. This monotonicity is apparent in Fig. 6 and also in Fig. 8, where we have drawn contours of constant g in the $g_{0}-\xi^{2}$ plane. The constant-g contours, when drawn in the $\tilde{g}_{-} \xi^{2}$ plane (see Fig. 9), clearly show that $g\left(\xi^{2}\right)$ for fixed \tilde{g}_{0} is not monotonic. [We remark that our numerical analysis does not yield enough reliable information for us to predict the large $-\xi^{2}$ region in Figs. 8 and 9. The topology of Fig. 9 is quite sensitive to the behavior of $\left(d \hat{\xi}_{1} / d \bar{G}_{0}\right)_{g}$ when $\hat{\xi}_{1}=1$. We have assumed that $\left(d \hat{\xi}_{1} / d \bar{G}_{0}\right)_{g}$ is greater than zero for $g<g^{*}$ and equal to zero for $g=g^{*}$ when $\hat{\xi}_{1}=\infty$. Here $\hat{\xi}_{1}=\xi^{2} /\left(1+\xi^{2}\right)$ and $\bar{G}_{0}=g_{0} /\left(240+g_{0}\right)$.]

7.3. $d=3$ (SC, BCC, FCC)

In three dimensions a qualitative change in $g\left(g_{0}, \xi^{2}\right)$ is evident. The small- g_{0} behavior of g at fixed ξ^{2} is consistent with the rigorous results of constructive field theory. ${ }^{(55)}$ For small ξ^{2}, the curves (see Figs. 10 and 11) are similar to those shown for $d=1$ and $d=2$. For large values of ξ^{2}, however, g no longer increases monotonically with g_{0} (see Fig. 12). This behavior is more easily discernible when one examines $g\left(\tilde{g}_{0}\right)$ for fixed ξ^{2}.

[^4]

Fig. 10. The renormalized coupling constant g as a function of the bare coupling constant g_{0} for several values of the correlation length ξ on the body-centered-cubic lattice. The thick curve represents our estimate of $g\left(g_{0}\right)$ in the limit $\xi^{2} \rightarrow \infty$. The apparent error is indicated by the vertical bars.

Fig. 11. An enlargement of upper right-hand corner of Fig. 10. The dashed curves are drawn in keeping with the procedure described in (7.1). The apparent error is indicated by the vertical bars.

Fig. 12. The renormalized coupling constant g as a function of \tilde{g}_{0} for several values of the correlation length ξ on the body-centered-cubic lattice.

There are clear indications that g rises to a maximum value and then for $\tilde{g}_{0} \gtrsim 0.7$ decreases; thus the hypothesis of Schrader ${ }^{(31)}$ that g is a monotonic function of g_{0} for fixed ξ^{2} does not appear to be valid. In Table VI we list values of g and \tilde{g}_{0} near the maximum and in the Ising limit $\left(\tilde{g}_{0}=\infty\right)$ for several values of ξ^{2}.

Using the diagonal $d \log$ Padé approximants to the function $Q\left(\xi^{2}\right)$ $=\left(\partial^{2} \chi / \partial \tilde{H}^{2}\right) / \chi^{2}$, we have estimated the value of ω^{*} [defined in Eq. (2.32)]. These estimates are shown in Table VII near the Ising limit; they are consistent with estimates of ω^{*} obtained from the integral approximants. As \tilde{g}_{0} moves away from the Ising limit, ω^{*} approaches zero. We conclude that for Ising-like systems, hyperscaling fails. Our values for ω^{*} at $\tilde{g}_{0}=\infty$ are consistent with the analysis of Baker, ${ }^{(11)}$ but the method we have used does not seem to be as accurate.

The existence of two universality classes (Ising-like and non-Ising-like) for this model, i.e., the fact that the limits $g_{0} \rightarrow \infty$ and $\xi^{2} \rightarrow \infty$ do not commute, is strikingly apparent when one constructs a picture of the entire $g\left(\tilde{g}_{0}, \xi^{2}\right)$ surface. We exhibit this surface by drawing lines of constant g on

Table VI. The Decay of the Renormalized Coupling Constant $g\left(\tilde{g}_{0}, \xi^{2}\right)$ from its Fixed-Point Value as the Ising Limit ($\tilde{g}_{0}=\infty$) is Approached

	ξ^{2}	$\tilde{g}_{0}=0.35$	$\tilde{g}_{0}=1.0$	$\tilde{g}=\infty$
SC	4	25.1 ± 0.1	24.7 ± 0.2	29.7 ± 0.3
	16	24.1 ± 0.4	24.9 ± 0.6	25.5 ± 0.8
	64	23.7 ± 0.8	23.3 ± 1.0	22.8 ± 1.2
	256	23.5 ± 1.2	22.0 ± 1.4	20.6 ± 1.8
	1024	23.4 ± 1.6	20.9 ± 1.8	18.8 ± 2.0
	4096	23.3 ± 2.0	19.8 ± 2.2	17.0 ± 2.3
	10^{6}	22.9 ± 3.7	16.1 ± 3.3	11.6 ± 2.6
	ξ^{2}	$\tilde{g}_{0}=0.7$	$\tilde{g}_{0}=1.0$	$\tilde{g}_{0}=\infty$
BCC	4	23.85 ± 0.01	25.55 ± 0.05	28.0 ± 0.1
	16	23.97 ± 0.02	24.2 ± 0.2	25.0 ± 0.1
	64	23.76 ± 0.04	23.6 ± 0.3	23.1 ± 0.3
	256	23.72 ± 0.07	23.2 ± 0.4	21.6 ± 0.4
	1024	23.7 ± 0.1	22.8 ± 0.5	20.2 ± 0.5
	4096	23.7 ± 0.1	22.5 ± 0.2	18.8 ± 0.5
	10^{6}	23.8 ± 0.2	21.2 ± 1.0	14.4 ± 0.7
	ξ^{2}	$\tilde{g}_{0}=0.8$	$\tilde{g}_{0}=1.0$	$\tilde{g}_{0}=\infty$
FCC	4	24.77 ± 0.05	25.22 ± 0.01	27.78 ± 0.08
	16	23.9 ± 0.2	24.10 ± 0.01	25.1 ± 0.2
	64	23.7 ± 0.3	23.65 ± 0.03	23.3 ± 0.4
	256	23.6 ± 0.4	23.36 ± 0.03	21.8 ± 0.6
	1024	23.5 ± 0.6	23.11 ± 0.03	20.6 ± 0.7
	4096	23.5 ± 0.8	22.87 ± 0.05	19.3 ± 0.7
	10^{6}	23.3 ± 1.3	22.0 ± 0.1	15.2 ± 1.3

Table VII. The Anomalous Dimension ω^{*}, Defined by Eq. (2.32), as a Function of \tilde{g}_{0}

		\tilde{g}_{0}			
	Lattice	1	10	∞	
	SC	0.12 ± 0.06	0.20 ± 0.10	0.22 ± 0.10	
	BCC	0.02 ± 0.02	0.10 ± 0.06	0.10 ± 0.08	
	FCC	0.02 ± 0.04	0.08 ± 0.08	0.10 ± 0.06	
			\tilde{g}_{0}		∞
Lattice	0.01	0.1	1	10	∞
HSC	0.16 ± 0.02	0.40 ± 0.04	0.50 ± 0.08	0.58 ± 0.08	0.58 ± 0.08
HBCC	0.10 ± 0.02	0.26 ± 0.06	0.38 ± 0.12	0.44 ± 0.14	0.44 ± 0.16

Fig. 13. Contours of the renormalized coupling constant g in the $\hat{\xi}_{64}, \bar{G}_{0}$ plane for the body-centered-cubic lattice. Here $\hat{\xi}_{64}=\xi^{2} /\left(64+\xi^{2}\right)$ and $\bar{G}_{0}=g_{0} /\left(240+g_{0}\right)$. The thick curve represents $g^{*}=23.78$.
the $\tilde{G}_{0}=\tilde{g}_{0} /\left(1+\tilde{g}_{0}\right)$ and $\hat{\xi}_{64}=\xi^{2} /\left(64+\xi^{2}\right)$ plane. This surface (Fig. 13) was obtained graphically from plots of g versus ξ^{2} for fixed values of \tilde{g}_{0} (see Fig. 14). The analysis of the g surface indicates that a saddle point of elevation $g=23.78 \pm 0.08$ is located at $\tilde{g}_{0}=0.64 \pm 0.02$ and $\xi=6.5 \pm 1.0$. The saddle point is also apparent in the $g_{0}-\hat{\xi}_{64}$ plane, as shown in Fig. 15. The failure of the Schrader monotonicity hypothesis, ${ }^{(31)}$ the noncommutativity of the $g_{0} \rightarrow \infty$ and $\xi^{2} \rightarrow \infty$ limits, and the failure of hyperscaling for Ising-like systems are bound up with the presence of the saddle point. We wish to emphasize the fact that our numerical methods are very accurate at small correlation lengths $(\xi<8)$. Since the saddle point is located at $\xi=6.5 \pm 1.0$, we are quite confident of its existence.

We remark that Schrader ${ }^{(31)}$ has shown that if the correlation length (second moment definition) is monotonic in the Ising model limit, and the transformation from the set of variables \tilde{g}_{0}, K, and \tilde{A} to the variables χ, μ_{2}, and $\partial^{2} \chi / \partial \tilde{H}^{2}$ has a nonvanishing Jacobian everywhere in the relevant region, then g takes on its maximum value at the Ising limit for fixed two-point renormalization. That is, we impose Eqs. (2.22) and (2.23). Since χ and μ_{2} are proportional to the scale of the spins squared, and $\partial^{2} \chi / \partial \tilde{H}^{2}$ to the scale to the fourth power, we can look for zeros of the Jacobian in the reduced two-by-two, scale-free transformation $\left(\tilde{g}_{0}, K\right) \rightarrow\left(g, \xi^{2}\right)$. Numeri-

Fig. 14. The renormalized coupling constant g as a function of the correlation length squared ξ^{2} for several values of \tilde{g}_{0} on the body-centered-cubic lattice. The vertical bars represent the apparent error.

Fig. 15. Contours of the renormalized coupling constant g in the $\hat{\xi}_{64}, \tilde{G}_{0}$ plane for the body-centered-cubic lattice. Here $\hat{\xi}_{64}=\xi^{2} /\left(64+\xi^{2}\right)$ and $\tilde{G}_{0}=\tilde{g}_{0} /\left(1+\tilde{g}_{0}\right)$. The thick curve represents $g^{*}=23.78$.
cally we see no breakdown for any \tilde{g}_{0} in the monotonicity of $\xi^{2}(K),{ }^{10}$ as all the series terms are positive and look very regular at the highest orders computed, and we find that the Jacobian vanishes at the above-mentioned saddle point, thus destroying the basis of Schrader's proof and reconciling our numerical results with his important and deep rigorous result.

A study of $g\left(\xi^{2}\right)$ at the maximum yields the following estimates for g at the saddle point: 23.8 ± 0.8 (SC), 23.78 ± 0.08 (BCC), and 23.7 ± 0.3 (FCC), all of which agree with the estimate ${ }^{11}$ of $g^{*}=23.81 \pm 0.07$ found using an approach based on the Callen-Symanzik equation. ${ }^{(32,33)}$

The controversy over the validity of the hyperscaling laws has existed for as long as the idea of hyperscaling; and it may be that there are some practitioners of hyperscaling who will not be totally convinced by our "numerical conclusion" that hyperscaling fails for sufficiently Ising-like continuous-spin models in three dimensions. Only a rigorous mathematical proof that hyperscaling is or is not valid will put an end to this controversy. While we await such a proof, it is important to keep in mind that, irrespective of the hyperscaling question in three dimensions, our work clearly indicates the existence of more than one "fixed point" for the continuous-spin Ising model: non-Ising-like systems have $g^{*}=23.78 \pm$ 0.08 , while for Ising-like systems g^{*} is certainly much less than 23.8. In other words, it is likely that the structure of $g_{0}: \phi^{4}:_{3}$ is more complicated than previously anticipated.

7.4. $d=4$ (HSC and HBCC)

In four dimensions the behavior of $g\left(g_{0}, \xi^{2}\right)$ is similar to that obsserved in lower dimensions if ξ^{2} is kept small. For larger values of $\xi^{2}, g\left(g_{0}\right)$ rises to a maximum at the point ($g_{0}^{\max }, g^{\max }$) and then falls as g_{0} approaches infinite (see Fig. 16). The location of the maximum of this curve approaches the origin as ξ^{2} approaches infinity. In Table VIII we list $g^{\max }$ for several values of ξ^{2}. Figure 17 shows that the dependence of $g^{\text {max }}$ on ξ^{2} is roughly consistent with the $1 / \ln \xi^{2}$ decline predicted from the perturbation theory result that $g=g_{0}-c\left(\ln \xi^{2}\right) g_{0}^{2}+O\left(g_{0}^{3}\right)$. (Here c is a constant, independent of ξ^{2} or g_{0}.)

The entire $g\left(\tilde{g}_{0}, \xi^{2}\right)$ surface is shown in Fig. 18 for the HBCC lattice. The figure was obtained graphically from plots of g versus ξ^{2} for fixed \tilde{g}_{0}. The structure of the surface is much simpler than its three-dimensional counterpart; it clearly indicates that for each $g_{0}>0, \lim _{\xi^{2} \rightarrow \infty} g\left(g_{0}, \xi^{2}\right)=0$. That is, the field theory is trivial.

[^5]

Fig. 16. The renormalized coupling constant g as a function of the bare coupling constant g_{0} for several values of the correlation length ξ on the hyper-body-centered-cubic lattice. The apparent error is indicated by the vertical bars.

Fig. 17. The maximum value of the renormalized coupling constant $g^{\max }$ as a function of the correlation length ξ. The dots represent the data in Table VIII. The apparent error is indicated by the vertical bars.

APPENDIX: HIGH-TEMPERATURE SERIES FOR $\chi, \partial^{2} \chi / \partial \tilde{H}^{2}$, AND μ^{2}

The high-temperature series for $\chi, \partial^{2} \chi / \partial \tilde{H}^{2}$, and μ_{2} are given, through tenth order, in Tables AI, AII, and AIII, respectively. The series are for the case $\tilde{H}=0$; the expansion variable is K. [See Eq. (2.15).] The format of the tables is most easily explained by example: the susceptibility on the plane

Fig. 18. Contours of the renormalized coupling constant g in the $\hat{\xi}_{64}, \tilde{G}_{0}$ plane for the hyper-body-centered-cubic lattice. Here $\hat{\xi}_{64}=\xi^{2} /\left(64+\xi^{2}\right)$ and $\tilde{G}_{0}=\tilde{g}_{0} /\left(1+\tilde{g}_{0}\right)$.

> Table VIII. The Maximum Value of the Renormalized Coupling Constant $g^{\max }$ on the HSC and HBCC Lattices as a Function of the Correlation Length Squares ξ^{2}

ξ^{2}	$g_{\mathrm{HSC}}^{\max }$	$g_{\mathrm{HBCC}}^{\max }$
1024	8.3 ± 1.0	8.5 ± 0.7
2048	7.3 ± 0.7	7.4 ± 0.8
4096	6.4 ± 0.6	6.6 ± 0.8
8192	5.8 ± 0.4	6.0 ± 0.5
16384	5.3 ± 0.3	5.4 ± 0.4
10^{6}	3.4 ± 0.2	3.5 ± 0.3

square lattice (PSQ) through order K^{4} is given by

$$
\begin{aligned}
\chi= & I_{2}(0)+4 I_{2}(0)^{2} K+\left[20 I_{2}(0)^{3}+4 I_{2}(0) I_{4}(0)\right] K^{2} / 2! \\
& +\left[132 I_{2}(0)^{4}+72 I_{2}(0)^{2} I_{4}(0)+4 I_{4}(0)^{2}\right] K^{3} / 3! \\
& +\left[1032 I_{2}(0)^{5}+972 I_{2}(0)^{3} I_{4}(0)+36 I_{2}(0)^{2} I_{6}(0)\right. \\
& \left.+164 I_{2}(0) I_{4}(0)^{2}+4 I_{4}(0) I_{6}(0)\right] K^{4} / 4!
\end{aligned}
$$

The factors $I_{n}(0)$ are the moments of the spin-density distribution. [See Eqs. (2.16) and (2.18).]

Table Al. The Susceptibility χ

(2.0.0.0.0)	
1.1.0.0.0.0	
$\left\{\begin{array}{l}2.0,0.0000 \\ 0.2: 0,0.0\end{array}\right\}$	
	$9,0.0$
3.30.0.0.0	
$\left\{\begin{array}{l}1.0 .00 .0 \\ 1.20 .0 \\ 1\end{array}\right.$	
0.2.0.0.1.0	

\begin{tabular}{|c|c|c|c|}
\hline PSO \& P \& LC \& PSQ \\
\hline \& (10) -9- \& \& \\
\hline 1 \& \[
\left\{\begin{array}{r}
10.0 .0 .0 .0 .0 \\
8.10 .0 .0 .0 \\
7.0 .0 .0
\end{array}\right.
\] \& 2086560
-6168960 \& \({ }_{9}^{489795945650}\) \\
\hline 4 \& \(\left\{\begin{array}{l}7.0 \cdot 1 \cdot 0.0 \\ 6.2 .0 .0 .0\end{array}\right.\) \& \(5995080^{\circ}\) \& \\
\hline \(\begin{array}{r}20 \\ 4 \\ \hline\end{array}\) \& 6.0.0.1.00
5
5.10 .10 .0 \& \(589680^{\circ}\) \& 154738880 \\
\hline 32 \& 5, 3.0 .0 .1 .0 \& -2192400 \& \(511025760^{\circ}\) \\
\hline \({ }_{4}^{72}\) \& 4.1 .0 .10 .00
\(4.0 .20: 0\) \& -153720 \& 8074080
2021540 \\
\hline \& \(3{ }^{3}, 2.1000 .00\) \& -594720 \& 1524.59920 \\
\hline ¢ \& 3:0.1:1:0 \& -12096 \& 2356704 \\
\hline 164 \& 2.4.0.0.0.0 \& 246960
-15120 \& \begin{tabular}{l}
103602240 \\
5508720 \\
\hline
\end{tabular} \\
\hline \({ }_{4}\) \& 2. 1.20000 \& 97776 \& 95556565 \\
\hline 10560 \& 2.0.0.2.0.0 \& 2682 \& 55908 \\
\hline \begin{tabular}{l}
11760 \\
720 \\
\\
\hline
\end{tabular} \& 1,2,0,0,1,0 \& \({ }^{85680}\) \& \(\begin{array}{r}12902400 \\ \begin{array}{r}75600\end{array} \\ \hline\end{array}\) \\
\hline 5460
360 \& \& 21672 \& 454608 \\
\hline 500 \& 10.0.1.0 \& 180 \& 1080 \\
\hline \& 0.5.0.0.0.0 \& 0 \& \\
\hline (132480 \& (2.2.2.0.0.0 \& 10416
840 \& 508704 \\
\hline +1160 \& 0.1.0.2.0.0 \& \(\bigcirc\) \& \\
\hline 116760

1460 \& $\left\{\begin{array}{l}0.0 .2 .1 .0 .0 \\ 0.0 .0 .2 .0 .0\end{array}\right\}$ \& ${ }_{2}$ \&

\hline ${ }_{9540}^{14400}$ \& (11,0.0.0.0.0 \& 10432800 \& .9662587200

\hline 180
320 \& \{ $\begin{aligned} & \text { 9.1.0.0.0.0 } \\ & 8.0 \\ & 0\end{aligned}$ \& - 58876000
-6350400 \& 199515960000

\hline 320
4 \& 7. 3 \& -3780000 \& 237916242000

\hline \& 6.1.0.0.0 \& 13456800 \& 29638224400

\hline 2439360 \& 5.3:0.0.0:0 \& 13381200 \& 13248295200

\hline 100800
2221500 \& 5.10.:0.0 \& 5671440
181 \& ${ }_{415265760}$

\hline + 5040 \& 5.0.0.0.0.1 \& -6400800 \& 4588567200°

\hline (5 S75600 \& 4.1.0.0.1:0 \& -284760 \& ${ }^{437846800}$

\hline 20552 \& 3 3.4,0,0.0.0 \& - 48014000 \& 4863978000

\hline 47040
672 \& 3.2.0.1.0.0 \& -529200 \& 240798600
53589880

\hline 12460 \& 3.1.0.0.0.1 \& -1080 \& ${ }^{7956500}$

\hline \& 3, 3 3.0.2.0.0 \& -5220 \& 2837880

\hline \& 2.2:0,0,1:0 \& -12600 \& 5304600

\hline | 9161440 |
| :--- |
| 7612880 | \& \{ 2.000000 \& (15160 \& ${ }^{4871040}$

\hline 1154160

4277600 \& , \& \& 15120
15200

\hline ${ }^{1} 1764600$ \& , \& 352800
37800 \& 2083032200

\hline ${ }^{2} 12520$ \& \} 2.20 .000 \& 482160 \& 65730000

\hline (90730840 \& \{ 1.200.0.0.1 \& 15950 \& 37800
57020

\hline 584569220 \& , 1.1.2.0.0 \& ${ }^{225990}$ \& ${ }_{4}^{49692620}$

\hline - 560400 \& , 00.0. \& ${ }^{90}$ \& 546

\hline 1246280 \& , 4.10 .0 .0 \& 96600 \& 14041806

\hline +122080 \& $\left\{\begin{array}{l}\text { a.3.0.0.1.0 } \\ 0.2 .1 .10 .0 \\ 0.15\end{array}\right.$ \& \& 138600
137796

\hline 336
5
524 \& $\left\{\begin{array}{l}\text { a } \\ 0.1 \\ 0.1 \\ 0.0 \\ 0\end{array}\right.$ \& 10080 \& 927360

\hline 83720 \& 3:10.0.0 \& 690
990 \& - 59200

\hline 42520 \& , 0.0 .2 .0 .10 \& 924 \& 5540

\hline 2520 \& $\left\{\begin{array}{l}\text { 0.0.1.2:0.0 } \\ 0.0 .0\end{array}\right.$ \& 2 \&

\hline
\end{tabular}

Table All. The Second Derivative of the Susceptibility $\partial^{2}{ }_{x} / \partial \vec{H}^{2}$

P	LC	PSO	!
$\left\{\begin{array}{l} 2.0 .0^{-0} 0.0 .0 .0 \\ 0.1 .0 .0 .0 .0 .0 \end{array}\right\}$	-3 1	-3	-3 1
$\left\{\begin{array}{l}3.0 .0 .0 .0 .0 .0 \\ 1.1,0.0 .0 .0 ~\end{array}\right.$	-24 8	-48	-72
$\left\{\begin{array}{l}4.0 .0 .0 .0 .0 .0 \\ 2.1 .0 .0 .0 .0 .0 ~ \\ 1.0 .0 .0 .0 .0 ~ \\ 0.2 .0 .0 .0 .0 .0 ~\end{array}\right.$	r -126 14 2 6	$\begin{array}{r} -732 \\ 188 \\ 4 \\ 12 \end{array}$	$\begin{array}{r} -1818 \\ 522 \\ 6 \\ 18 \end{array}$
$\left\{\begin{array}{l}5,0.0 .0 .0 .0 .0 \\ 3,1.0 .0 .0 .0 .0 \\ 2.0 .0 .0 .0 .0 \\ 1.0 .0 .0 .0 .0 \\ 0.1 .1 .0 .0 .0 .0 ~\end{array}\right.$	-432 -312 24 72 8	$\begin{array}{r} 11808 \\ 1392 \\ 144 \\ 528 \\ 16 \end{array}$	$\begin{array}{r} -48384 \\ 9036 \\ 396 \\ 1584 \\ 24 \end{array}$
	-540 -3396 -488 -156 6 188 66 2 6	$\begin{array}{r} -200376 \\ -16680 \\ 2736 \\ 15072 \\ 36 \\ 1224 \\ 404 \\ 4 \\ 12 \end{array}$	$\begin{array}{r} -1372788 \\ 54324 \\ 15840 \\ 82260 \\ 90 \\ 3684 \\ 1878 \\ 6 \\ 18 \end{array}$
	r -7680 -1920 -16560 0 640 1640 120 176 280 8	$\begin{array}{r} -3657600 \\ -145760 \\ 32160 \\ 245280 \\ 1440 \\ 50240 \\ 46480 \\ 720 \\ 1152 \\ 1680 \\ 16 \end{array}$	$\begin{array}{r} -41867280 \\ -5861160 \\ 454680 \\ 3098160 \\ 8640 \\ 297120 \\ 285360 \\ 2040 \\ 3648 \\ 9360 \\ 24 \end{array}$
	$\begin{array}{r} -52920 \\ 142200 \\ -200330 \\ -360 \\ -30840 \\ -7380 \\ 270 \\ 1764 \\ 7980 \\ 370 \\ 378 \\ 990 \\ 420 \\ 416 \\ 2 \end{array}$	-72232560 -39684960 -180000 -384480 138720 380720 3210040 41580 68528 234720 180 2364 51180 2520 2504 4	$\begin{array}{r} -1379002320 \\ -461880360 \\ 7967160 \\ 7515960 \\ 4368660 \\ 16684200 \\ 1800 \\ 25042500 \\ 267570 \\ 393372 \\ 1894140 \\ 450 \\ 7398 \\ 34190 \\ 9720 \\ 23184 \\ 6 \\ 18 \end{array}$
	-423360 614880 171360 126000 0 -416640 0 -920640 -15120 -35952 -31920 4368 42000 5880 26320 224	-1550223360 -1195306560 -241547840 151200 20435520 10080 66964800 1562400 2386272 15620640 20160 175392 6232800 570080 1344	$\begin{array}{r} -49084056000 \\ -26135071200 \\ -112432320 \\ -613940040 \\ 14182560 \\ 693403200 \\ 196560 \\ 1570200660 \\ 21160440 \\ 29256696 \\ 212633820 \\ 126000 \\ 1099728 \\ 83404440 \\ 2656080 \\ 5844468 \\ 3864 \end{array}$

P	LC	PSO	I
\{1.0.0.2.0.0.0	312	1968	6480
\} 0.3.1.0.0.0.0	10640	411040	3912720
\{ 0.2 .0 .0 .1 .0 .0	1680	10080	70224
\} 0.0.3.0:0.0.0	0	-	25452
\{0.0.0.1:1:0.0	8	16	24
(10.0.0.0.0.0.0)	3946320	-35927327520	-1883525328720
8.1.0.0.0.0.0	-18390960	-3541479680	-1369390412880
7.0.1.0.0.0.0	372960	-939496320	-21592055520
6.2.0.0.0.0.0	25416720	-13188677040 -9082080	-244468037520 232916040
5.0.0.0:0:0.0	1832880	-286685280	18258009840
5.0.0.0.1.0.0		75600	9903600
4.3.0.0.0.0.0	-12535320	750990240	70550814600
4.1 .0 .1 .0 .0 .0	-89880	31947720	117179496
4.0.2.0.0.0.0	-867720	59086944	1623677832
$4.0 .0 .0 .0 .1 .0\}$		644790720	
3.2 .1 .0 .0 .0 .0	-4401600	644893760	16915185520
3.0:1.1.0.0.0	-75264	8371104	106621200
2.4.0.0.0.0.0	-939540	466147080	11086897500
2.2.0.1.0.0.0	-89040	22496880	364006440
2.1.2.0.0.0.0	216048	47314176	807293424
2.1.0.0.0.1.0		5040	27200
2.0.1.0.1.0.0	1456	189908	1177542
1.3.1.0:0.0:0	307440	65923200	1123802400
\{ 1.2.0.0.1.0.0	1820	274120	2223060
1.1.1.1.0.0.0	77504	2018912	22659168
1.0.3.0.0.0.0	11536	266336 336	7302288
\} 1.0.1.0.0.1.0	626	3840	12336
\} 0.5.0.0.0.0.0	59220	4933320	107326380
年3.0.1.0.0.0	8890	405580	7980630
0.2.2.0.0.0.0	51716	1978312	2056360
0.1.1.0.1.0.0	2520	15120	64344
0.1.0.2.0.0.0	986	5924	, 71598
\} 0.0.2.1.0.0.0 0	924	5	162204
(0.0.0.0.2.0.0	6	12	18
(11.0.0.0.0.0.0)	48988800	-893971572480	-77609988751680
9.1.0.0.0.0.0	-107049600	-1073067730560	-71346176002080
(8.0.1.0.0.0.0	-28304640	-31366984320	-1598301240480
7.2.0.0.0.0.0	-362880	-561081427200	- 22656556863360
6.0.0.1. 1.0 .0 .0	76325760	-37012066560	-198652487040
(6.0.0.0.1:0.0		-5080320	251929440
\{ 5.3.0.0.0.0.0	124830720	-53762849280	1470780128160
\{ 5.1 .8 .1 .0 .0 .0$\}$	2268000	36469440 424932480	45183186720 65337632640
5.0.0.0.0.1.0	-72560		3810240
4.2.1.0.0.0.0	-48323520	15781409280	1020552734880
\} 4.1.0.0.1.0.0		22135680	1093992480
$4.0 .1 .1 .0 .0 .0\}$	-1711584	256785984	7474457088
\} 3.4 .0 .0 .0 .0 .0$\}$	-78563520	20264912640	1028659746240
(3.2.2.0.0.0.0	-11573856	2586499776	78643649952
\} 3.1.0.0.0.1.0		302400	6168960
\} 3.0.1.0.1.0.0	-40320	8015616	112819392
\{ 3.0.0.2.0.0.0	-9645560	5841964800	175257583200
\} 2.2.0.0.1.0.0	-50400	21420000	401027760
, 2.1 .1 .1 .0 .0 .0 ,	221760	194866560	3760313760
\{2.0.3.0.0.0.0		41356224 60480	$\begin{aligned} & 540128 \\ & 387072 \end{aligned}$
\} 2.0.0.1.1.0.0	3392	445824	2919888
1.5.0.0.0.0.0	2721600	1364751360	37622869200
1.3.0.1.0.0.0	110880	113400000	2567224800
1.2.2.0.0.0.0	2336544	329277312 151200	997920
\} 1.1.1.0.1.0.0	58464	2632896	28171584
\{ 1.1.0.2.0.0.0 1.0 .2 .0 .0 .0	105912 93744	2218032 1977696	28151928 57050784

LC	PSO	\uparrow
360	2160	6264
480	2976	0080
534240	82656000	2134082160
	554400	10876320
192528	6094368	106242192
73920	4228224	55242432
1680 5960	10080 23760	191592
3696	22176	207648
		441936 24
8	16	24
-853221600	-23787918907200	-3418910164908000
4030236000	-33680465884800	-3800952130399200
-92988000	-1033291728000	-100949278298400
-6718723200	-22201365362400	-1685156781218400
-6350400	-11515543200	-986175842400
-327499200	-1920152304000	-73843754846400
-327920	-118389600	-1118577600
4705495200	-5099819054400	- 929065956437600
19769400	-31943041200	775840048200
149052960	-44608324320	1260189070560
	-33055646400	
$\begin{array}{r} 973198800 \\ 567000 \end{array}$	$\begin{array}{r} 33944400 \\ -\quad 2 \end{array}$	51218357400
5087880	3805900560	383183839080
	\bigcirc	6558860400
-1125684000	431775640800	69554844941400
-233689680	28449489600	2338364019600
-233689680	91939921920	5840674333200 627555600
-405720	275672880	9805040280
-3205980	442096920	12077260380
-599785200	328469702400	19177075512000
-680400	1019088000	43712713800
-37391760	12075341040	425198077920
	75600	1134000
-4324320	2950758720	133917265440
-10080	4168080	72969120
-167400	32402160	432808920
-69930000	136569384000	7006499400600
-14502600	10977157800	439427551500
-17884440	34603616880	1295238674520
-12600	12864600	274295700
-493920	287920080	5727667680
1139580	255318120	
2063880	280027440 15120	10551749040
4230		2170530
16668	428136	2768004
15838200	22137242400	841533121800
-37800	141472800	4105306800
6897240	1424712240	41115082680
	37800	189000
6004320	848793120	22264396560
18060	2421720	21461580
285210	7076700	93396510
207648	5424048	97385400
127350	2866140	180954810
	540	1350
926	5652	18498
2016000	1620712800	50364946800
○	244314000	6220443600
4815720	532365120	20033652240
	831600	8946000
113820	5811120	195938882
357030	10984860	155366370
520380 420	23438520 2520	532881720 6300
5940	$3564{ }^{2}$	\%61820
1998	11996	173994
36288	5733504	56940408
5544	33264	162540
6006	36036	1511010
		544320
${ }_{6}$	${ }_{1}^{4}$	18

P	SC	BCC	FCC
$\left\{2.0 .0^{-0} 0.0 .0 .0\right\}$	-3 1	-3 1	-3
$\left\{\begin{array}{l}3.0 .0 .0 .0 .0 .0 \\ 1.1 .0 .0 .0 .0 .0 ~\end{array}\right.$	-72 -24	-96	-144 48
$\left\{\begin{array}{l} 4.0 .0 .0 .0 .0 .0 \\ 2.1 .0 .0 .0 .0 \\ 1.0 .00 .0 .0 \\ 0.2 .0 .0 .0 .0 \end{array}\right\}$	$\begin{array}{r} -1818 \\ -122 \\ 6 \\ 18 \end{array}$	$\begin{array}{r} 3384 \\ 1016 \\ 8 \\ 24 \end{array}$	$\begin{array}{r} -7956 \\ 2484 \\ 12 \\ 36 \end{array}$
	$\begin{array}{r} -51408 \\ 10872 \\ 360 \\ 1368 \\ 24 \end{array}$	$\begin{array}{r} -136512 \\ 33888 \\ 672 \\ 2592 \\ 32 \end{array}$	$\begin{array}{r} -500256 \\ 136224 \\ 1728 \\ 7056 \\ 48 \end{array}$
	$\begin{array}{r} -1619028 \\ 184788 \\ 14112 \\ 74484 \\ 90 \\ 3108 \\ 1014 \\ 6 \\ 68 \end{array}$	-6179760 1108464 40416 212064 168 5840 1896 8 24	$\begin{array}{r} -35435880 \\ 7733448 \\ 179856 \\ 949248 \\ 1966 \\ 16152 \\ 7932 \\ 12 \\ 36 \end{array}$
	$\begin{array}{r} -56816640 \\ 367200 \\ 485280 \\ 3331440 \\ 7200 \\ 236160 \\ 194040 \\ 1800 \\ 2928 \\ 4200 \\ 24 \end{array}$	-312353280 31306560 2258880 14990400 20160 657280 538400 3360 5504 7840 32	-2801148480 432302400 16888320 111293280 93600 3244800 3025680 8880 15936 39120 48
	$\begin{array}{r} -2201868360 \\ -237244680 \\ 14949200 \\ 132509740 \\ 14328880 \\ 1434900 \\ 18929700 \\ 201690 \\ 2988992 \\ 997020 \\ 450 \\ 19958 \\ 19090 \\ 6300 \\ 6264 \\ 6 \\ 18 \end{array}$	$\begin{array}{r} -17454843360 \\ 248497920 \\ 119969280 \\ 994528800 \\ 1681200 \\ 62225760 \\ 5040 \\ 79714800 \\ 564120 \\ 819936 \\ 2772960 \\ 840 \\ 11160 \\ 610200 \\ 11760 \\ 11696 \\ 88 \end{array}$	$\begin{array}{r} -244974397680 \\ 20557251360 \\ 1536049440 \\ 12320573040 \\ 14328360 \\ 521416080 \\ 19800 \\ 717719400 \\ 2885220 \\ 4217184 \\ 19941120 \\ 1980 \\ 37148 \\ 3721140 \\ 41400 \\ 95256 \\ 12 \\ 36 \end{array}$
	$\begin{array}{r} -93655154880 \\ -21078701280 \\ 374401440 \\ 4425820560 \\ 15331680 \\ 7554556880 \\ 151200 \\ 1447044480 \\ 16102800 \\ 22507632 \\ 128807280 \\ 100800 \\ 795312 \\ 47643120 \\ 1338120 \\ 2303280 \\ 3360 \end{array}$	-1071180633600 6193353600 62751769920 123802560 5297066880 9485105280 70338240 594721088 28224 O 2186688 208017600 3712800 6341440 6272	23518678095360 21860891200 138650218560 132917149680 1850038500 75076787520 6350400 13820958800 651188160 862493184 6036775920 1360800 11696832 2302957440 27956880 61066992 16800

P	SC	BCC	FCC
(1.0.0.2.0.0.0)	4968	9312	28080
\{ 0.3, 1,0.0.0.0	1537200	4773440	42756000
\{0.2.0.0.1.0.0	4200	7840	21840
\} $0,1,1,1.0,0,0$,	25200	47040	290976
$\{0.0 .3 .0 .0 .0 .0\}$			$\begin{array}{r} 101808 \\ 48 \end{array}$
$(0.0 .0 .1 .1,0.0)$	24	32	48
(10.0.0.0.0.0.0 \}	-4341352211280	-71656265580480	-2461342220598240
\{ 8.1.0,0.0.0.0	-1494315481680	-12042896886720	-167582225795040
7.0.1.0.0.0.0	2692418400	293847321600	12401644510080
\} 6.2.0.0.0.0.0	83061961920	3705141575520	140703063485040
\{ 5.0.0.1.0.0.0	571936680	8445608640	222148815840
5 5.1.1.0.0.0.0\}	36242312400	428148719040	10239508228320
5.0.0.0.1.0.0	8210160	71255520	1247384880
4 4.3.0.0,0.0.0	94826972520	998254824000	23893649186400
4 4.1.0.1.0.0.0	1039086720	7454380080	121290051960
\} 4.0.2.0.0.0.0	1468591992	9811112640	152669633760
\{4.0.0.0.0.1.0	37800	176400	1247400
3 3.2.1.0.0.0.0\}	12158455680	79899415680	14.30280532800
3 3.1.0.0.1.0.0	10735200	48612480	476904960
3.0.1, 1.0.0.0	76912416	323585472	3113024544
2 2.4 .0 .0 .0 .0 .0 \}	7243839540	46927582800	839128260600
2 2.2.0.1.0.0.0	196751520	843047520	10600959600
\{ 2, 1.2.0.0.0.0	369441072	1553298432	22576237824
\{ 2.1.0.0.0.1.0	25200	70560	277200
2.0.1.0.1.0.0	621936	1730176	9331392
2,0.0.2.0.0.0	827766	2251176	12391452
\{1.3.1.0.0.0.0\}	490598640	2245770240	31651636800
\{1.2.0.0.1.0.0\}	1334340	3726800	23576280
\{ 1.1, 1, 1.0.0.0	8521632	23498048	236673696
\} 1.0.3.0.0.0.0	1045296	2968000	77022624
\{ 1.0.1.0.0.1.0	840	1568	3696
\{ 1.0.0.1.1,0.0\}	9648	18048	53376
\{ 0.5, 0.0.0.0.0\}	35125020	159178320	3092842200
0,3.0.1.0.0.0	1694070	4976440	85146180
(0.2.2.0.0.0.0	7220556	22838480	234802680
\{0.2.0.0.0.1.0	1050	1960	4620
\} 0.1, 1.0,1,0.0	37800	70560	272496
(0,1.0,2,0.0.0	14814	27656	292332
\{0.0.2.1.0.0.0	13850	25872	654360
\} 0.0.0.1.0.1.0	${ }^{6}$	8	12
(0.0.0.0.2.0.0)	18	24	36
11.0.0.0.0.0.0	-218056931487360	-5194080120660480	-279054504944248320
\{ 9.1,0,0.0,0.0	-101205199872000	-1361344519584000	-41118364918229760
8.0.1.0.0.0.0	-575815736960	10618635928320	1066203123068160
(7.2,0.0.0.0.0	-5387044682880	184762446543360	14379837775914240
\} 7.0,0.1.0.0.0	18419244480	557501253120	25907585356800
\} 6.1.1.0.0.0.0	1549948296960	33394899041280	1362124056948480
\} 6.0.0.0.1.0.0	349997760	6092755200	198837555840
(5.3.0,0.0.0.0	5561466583680	98253468633600	3898356222055680
\{ 5,1.0.1.0.0.0	59414977440	721622805120	20316716239680
\} 5,0,2,0,0.0.0	85652743680	937633294080	24901023369600
\} 5.0.0.0.0.1.0	2721600	25401600	489888000
(4.2, 1.0.0.0.0	969276248640	10122819678720	295824017341440
4.1.0.0.1.0.0	858392640	6552161280	120089329920
4 4.0.1.1.0.0.0	5991965280	40132471680	684904030272
3.4.0.0.0.0.0	815620155840	8135597594880	237527939013120
\{ 3.2 .0 .1 .0 .0 .0$\}$	21148646400	143537244480	3026562265440
3.1,2.0.0.0.0	43056165600	280996813440	6377060587968
3,1.0.0.0.1.0	4536000	21168000	198676800
3.0.1.0,1.0.0	77874048	334849536	3374203392
3,0.0,2,0,0.0	95664240	396660672	3991941792
$2,3,1,0,0.0 .0\}$	88089755040	594596298240	13590319881600
$2,2,0.0 .1 .0 .0$	212647680	928468800	12049158240
2.1 .1 .1 .0 .0 .0	1557299520	6542887680	106563461760
2.0 .3 .0 .0 .0 .0	299974752	1279845504	33478861248
2.0 .1 .0 .0 .1 .0	302400	846720	4173120
2.0.0.1.1.0.0	1991952	5443200	30720384
1.5.0.0.0.0.0	17648487360	117278219520	2787874528320
1,3.0.1.0.0.0	853947360	3905483840	74214826560
1.2.2.0.0.0.0	2368789920	11146883328	205226396928
, 1.2.0.0.0.1.0	756000	2116800	10735200
\{ 1.1.1.0.1.0.0	12029472	33328512	294694848
\{1.1.0.2.0.0.0	8945640	24543072	293521104
1.0.2.1.0.0.0)	7901712	21857472	598818528

p	HSC	HBCC
$\left\{\begin{array}{l} 2.0 \cdot 0^{-0} \cdot 0 \cdot 0.0 .0 \\ 0.1 .0^{0} \cdot 0.0 .0 \end{array}\right\}$	-3	-3
$\left\{\begin{array}{l}3,0,0.0 .0 .0 .0 \\ 1.1,0.00 .0\end{array}\right.$	$\begin{array}{r}-96 \\ \hline 2\end{array}$	-192 -64
$\left\{\begin{array}{l} 4.0 .0 .0 .0 .0 .0 \\ 2.1 .0 .0 .0 .0 \\ 1.0 .0 .0 .0 .0 \\ 0.2 .0 .0 .0 .0 .0 \end{array}\right.$	$\begin{array}{r} -3384 \\ 1016 \\ 84 \\ 24 \end{array}$	$\begin{array}{r} -14448 \\ 4592 \\ 16 \\ 48 \end{array}$
$\left\{\begin{array}{l}5.0 .0 .0 .0 .0 .0 \\ 3.1 .0 .0 .0 .0 \\ 2.0 .0 .0 .0 .0 \\ 1.0 .0 .0 .0 .0 .0 ~ \\ 0.0 .0 .0 .0 ~\end{array}\right.$	$\begin{array}{r} -136512 \\ 33888 \\ 672 \\ 2592 \\ 32 \end{array}$	$\begin{array}{r} -1277568 \\ 376512 \\ 2880 \\ 11328 \\ 64 \end{array}$
$\left\{\begin{array}{l}6.0 .0 .0 .0 .0 .0 \\ 4.1 .0 .0 .0 .0 \\ 3.0 .0 .0 .0 .0 \\ 2.0 .0 .0 .0 .0 \\ 2.0 .0 .0 .0 .0 \\ 0.3 .0 .0 .0 .0 \\ 0.3: 0.0 .0 .0 ~ \\ 0.0 .0 .0 .0 .0 ~\end{array}\right.$	$\begin{array}{r} -6243696 \\ 1148208 \\ 39840 \\ 206880 \\ 168 \\ 5840 \\ 1896 \\ 88 \\ 24 \end{array}$	$\begin{array}{r} -129648096 \\ 34378080 \\ 408384 \\ 2104512 \\ 720 \\ 25248 \\ 8144 \\ 16 \\ 48 \end{array}$
	-321442560 36421440 2201280 14552640 20160 645760 503840 3360 5504 7840 32	$\begin{array}{r} -14891604480 \\ 3448410240 \\ 56496000 \\ 360082560 \\ 201600 \\ 6406400 \\ 4970560 \\ 14400 \\ 23808 \\ 33600 \\ 64 \end{array}$
	$\begin{array}{r} -18425028960 \\ 714954240 \\ 119692800 \\ 983918880 \\ 1629360 \\ 59587680 \\ 5040 \\ 73488240 \\ 558360 \\ 802656 \\ 2611680 \\ 11160 \\ 489240 \\ 11760 \\ 11696 \\ 8 \\ 84 \end{array}$	-1910216882880 372500064000 7977611520 61133538240 42040800 430604480 1718074080 5574960 25865280 3600 48048 5498160 50400 50144 50144 16 48
		-270906981166080 42382346146560 1178996878080 10585093518720 8065008000 302018384640 18345600 492997128960 1641628800 2108572032 2822400 20990592 4315785600 35918400 57653120 26890

p

HSC
9312
3725120 7840 47040 32
-80721591854400
-9378440688960
351567014400
4266188166240
8252254080
416198475840
67626720
930601472640
6999147120
9210897024
176400
71206746240
47402880
309054144
39690304080
776821920
1388870784
70560
1714048
2202792
1781404800
3699920
22283072
2629312
1568
18048
126082320
4378360
17219216
1960
70560
27656
25872
84
24
-6076426019489280
-1187463790437120 17191683129600 262658235409920 577919784960 34092055388160 5700844800 95130526256640 677086542720
884192682240

25401600 9009529966080 6151541760 37449336960 6928463485440 127972595520
243188346240 243188346240

29168000
321302016 321302016
378081216 476983261440 885407040 5919217920 091873664

846720
534642 89395246080 3128711040 8441685504

2116800
32554368 32554368
22898016 22898016
20115648

HBCC
40128 33600 201600

64

> 42097758294049920 4900569696570240 183168888053760 1895268783360960 1517111366400 63215025874560 4986475200 130272939820800 432594526560 527981577984 4586400 4075977319680 1198176000 7195074432 2265553936800 18506107200 32471862528
705600

705600
007872

21251664
46279645440
36897200
218443904
26698112
6720
77568
3229957920 46330480 201024544

02400
302400
118544
110880
16
48
-7116061627543034880
535919212294986240 29981943429419520 352709420609387520 289910013926400 13392240549488640 1206626803200 33403048525808640 18276077064960
127632198597120

1981324800
1276660592686080 406120780800 2160817489152 949977372395520 7566099408000 13877730494208

550368000
7683701760
8650523520 28657537251840 21564547200 138018746880
26031317760 26031317760
8467200

8467200
51902208 5341526184960 80939416320 227434798080

21168000
321350400
222881472
197769600
P

HSC
10080
14016 2040433920 7761600 54379584 54379584
32938752 938752
47040 47040
110880 103488 0
32
-494149407736924800 -136073758812364800 544923491212800 13372643707819200 40308353870400 2795226069484800 464741323200 9508468913596800 63833684796000 83658869945280

2624529600
1067155876483200 691410232800 4174402811040
1060161723432000 18243489902400 35940379184640

3585103200
47348419040
54394228080
97087236220800 165922646400 167080654880

5292000 249720831360

213302880
133157600 29569677782400 985325468400 2617271042400

700534800 9652416480 7458385680
7767779040
4086360
4086360
4906512
1461533068800
4664016000
36931517280
36931517280
529200
20170207680
32570160
77676120
59953824
59953824
28429560
2520
91511582400
5905720800
12681385920
11642400
65264640 98597880
87997040

11760
11760
166320
166320
55992
38828160
155232
168168
0

HBCC
HBCC
43200
60288
60190824960
77616000
612920448
427080192
201600
475200
443520
0
64

64
-1300088046600125395200 43417405533546777600 5151435458512896000 68296932748947772800 56974591221609600 2909447193528691200

280634193302400 8529355232422214400 26718880113374400 30778593240608640 656644060800 378415158584198400 123467186001600 611868850689600 495331200 355120112249481600 2727739255248000 5090680482048000 258937560000 2861841648960 13997495767852800 10307300371200 67011590318400

137592000
14637587086080
5346532800 4155591579148800 61686990741600 165554438777280 17756676000 227638998720
173440853280 184705456320

2116800
40405680
40405680
47026464
95931140256000 115726867200 993210240960
600843949440
324424800
557946150
588087360
286717680
10800
113808
6833222121600 193130078400
399077723520 399077723520
116424000

682899840 1103566320 2350141920

712800
239984
578285568
665280
720720
720720
16
48

Table AllI. The Second Moment μ_{2}

P	LC	PSQ	P	LC	PSQ
-0-			-9-		
(0.0.0.0.0.0)	0	0	(10.0.0.0.0.0)	-816480	27569263680
(0.0.0.0.0.0)			(8.1.0.0.0.0)	5443200	35322557760
(2,0.0.0.0.0)	2	4	(7.0.1.0.0.0)	0	1079386560
-2- 0.0			(6.2,0.0.0.0)	-6342840	23882780880
(3.0.0.0.0.0)	16	64	(6.0,0.1.0.0)	0	10523520
-3-			(5.1, 1, 0.0.0)	-861840	2521683360
(4.0.0.0.0.0)	90	900	(5.0.0.0.1.0)	0	0
(2,1,0.0,0.0)	12	72	(4, 3, 0,0.0.0)	710640	5821653600
(0,2,0,0,0.0)	2	4	(4.1.0, 1.0.0)	0	42910560
(4-			(4.0,2,0,0.0)	410760	114402960
(5.0.0.0.0.0)	384	13056	(3.2,1.0.0.0)	1985760	649837440
(3.1.0.0.0.0)	192	3072	($3,1,0,0,1.0$	\bigcirc	151200
($1.2 .0,0.0 .0$)	64	256	$(3,0,1,1,0.0)$	52416 3551600	5711328 442612800
-5-			(2,4,0.0,0.0)	3351600	442612800
(6.0.0.0.0.0)	1200	202560	(2, 2, 0, 1, 0,0)	65520	12605040
(4.1,0.0.0.0)	1440	88560	(2, 1, 2.0.0.0)	355824	21141792
(3,0.1,0.0.0)	0	720	(2.0.1.0.1.0)	0	30240
(2.2.0.0.0.0)	1170	13140	(2,0.0.2,0.0)	6138	83556
($1.1,1.0 .0 .0$)	60	360	(1,3.1,0.0.0)	569520	34191360
(0.3.0.0.0.0)	0	0	($1.2,0.0 .1 .0$)	0	75600
(0.0.2,0.0.0)	2	4	($1.1 .1,1,0.0$)	53928	712656
(6-			(1,0.3,0.0.0)	0	0
(7,0,0.0.0.0)	4320	3412800	(1.0.0.1.1.0)	180	1080
(5,1.0,0.0.0)	1440	2243520	(0.5.0.0.0.0	0	0
(4,0,1,0,0,0)	0	40320	(0,3,0.1,0.0)	0	0
(3,2.0.0.0.0)	14880	575040	(0.2.2,0.0.0)	53424	852768
($2,1.1 .0 .0 .0$)	1440	26880	(0,1,1,0.1.0	840	5040
(1.3.0.0.0.0)	960	14400	(0.1,0.2.0.0)	0	\bigcirc
(1.0.2.0.0.0)	96	384	(0.0,2,1.0,0	0	0
(0.2.1.0.0.0)	160	640	$(0,0,0,0,2.0$	2	4
(8,0.0,0.0.0)	44100	62881560	(11,0,0,0.0,0	-18144000	648321408000
(6.1.0.0.0.0)	-80640	54855360	(9.1.0.0.0.0	29030400	962952883200
(5.0.1.0.0.0)	0	1391040	(8,0,1,0.0.0	0	29393280000
(4, 2, 0,0,0.0)	116340	21602280	(7.2.0.0.0,0)	53222400	774464544000
(4.0.0.1.0.0)	0	5040	(7.0.0.1.0.0)	0	250387200
(3,1,1.0,0.0)	15960	1459920	(6.1.1.0.0.0)	-6652800	89360409600
(2,3,0.0.0.0)	31920	1559040	(6,0.0.0.1.0)	-109468800	268696915200
(2,1.0.1.0.0)	0	10080	(5.3.0.0.0.0)	-109468800	268696915200
(2.0.2,0,0.0)	2940	36680	(5,1.0.1.0.0)	- ${ }^{\circ}$	1854316800
($1.2,1,0,0.0$)	6720	82880	(5.0.2.0.0.0)	2298240	$\begin{array}{r}4975488000 \\ \\ \hline 8957990400\end{array}$
($1.0 .1,1.0 .0)$	112	672 30380	(4.2,1,0.0.0	-4233600	38957990400
(0.4,0,0.0.0)	2310	30380 840	($4,1,0.0 .1 .0)$	28220	12096000
(0.2.0.1.0.0)	140	840	(4.0 .1 .1 .0 .0)	2822240	336510720 36058276800
(0.1.2.0.0.0)	0	0	(3.4 .0 .0 .0 .0)	51559200 352800	36058276800 931089600
(0.0.0.2.0.0)	2	4	($3,2,0,1,0,0$)	352800 4515840	931089600 1923909120
-8-			(3.1.2.0.0.0)	4515840	1923909120 3064320
(9,0.0.0.0.0)	322560	1264112640 1363944960	$(3,0,1,0.1,0)$	0 106560	3064320 7009920
(7.1.0.0.0.0)	-483840	1363944960 40158720	$\binom{3,0,0,2,0,0}{2,3,1,0,0,0}$	106560 17640000	7009920 4257590400
$\left\{\begin{array}{l}6.0 .1 .0 .0 .0 \\ 5.2 .0 .0 .0 .0\end{array}\right\}$	120960	40158720 733420800	$\binom{2,3,1,0,0,0}{2,2,0,0,1,0}$	17640000 0	4257590400 8668800
$\left\{\begin{array}{l}5.2,0.0 .0 .0 \\ 5.0 .0 .1 .0 .0\end{array}\right\}$	120960 0	733420800 322560	$\left(\begin{array}{l}2,2,0,0.1,0 \\ 2,1,1,1.0 .0 \\ 2.0,0.0\end{array}\right.$	1431360	8668800 95840640
$\binom{5,0.0 .1 .0 .0}{4.1,1.0 .0 .0}$	53760	322560 64942080	$\binom{2,1,1,1,0.0}{2,0.3,0.0 .0}$	1431360 201600	95840640 10725120
$\binom{4.1,1,0.0 .0}{3.3,0,0.0 .0}$	53760 470400	64942080 108998400	$\binom{2.0 .3,0.0 .0}{2.0 .0 .1 .1 .0}$	201600 7200	10725120 138240
$\binom{3.3 .0,0.0 .0}{3.1 .0 .1 .0 .0}$	470400 0	1089998400 806400	$\binom{2.0 .0 .1 .1 .0}{1.5 .0 .0 .0 .0}$	7200 3427200	138240 692294400
(3.0.2.0.0.0)	43904	2245376	(1,3.0,1.0.0)	201600	34675200
(2.2,1,0.0.0)	170240	8798720	(1.2.2.0.0.0)	3087840	154096320
(2,0.1.1.0.0)	3584	68096	(1,1,1,0.1,0)	33600	994560
(1.4.0.0.0.0)	116480	4067840	(1, 1.0.2.0.0)	46080	633600
(1,2.0.1.0.0)	4480	125440	(1,0.2.1.0.0)	40320	584640
(1,1.2.0.0.0)	11648	166656	(1.0 .0 .0 .2 .0)	160	640
(1,0.0.2,0.0)	128	512	(0.4.1.0.0.0)	1142400	42470400
(0.3, 1,0.0.0)	4480	107520	(0.3,0,0.1,0)	0	268800
(0.1.1.1.0.0)	896	3584	(0.2,1,1,0.0)	80640	1612800
(0.0.3.0.0.0)	0	-	(0.1.3.0.0.0)	20160	1048320
			(0,1.0,1.1.0)	1920	7680
			(0.0.2.0.1.0)	2016	8064
			(0.0.1.2.0.0)	0	

P	T	SC	P	T	SC
-0-			-9-		
(0,0.0.0,0.0)	0	0	(10.0,0.0.0.0)	2091166126560	4495820565600
-1-			8,1.0.0.0.0)	2225242756800	3230986086720
(2,0,0,0.0.0)	6	6	7.0, 1, 0.0.0)	67914806400	73869122880
(3.0.0-			6,2.9.0.0.0)	1081454771880	1027201989240
(3.0.0,0.0.0)	144	144	(6.0.0.1.0.0)	715508640	663798240
-3-			(5,1.1.0.0.0)	78764782320	61070662800
(4.0.0.0.0.0)	3294	3294	(5.0.0.0.1.0)	1360800	1360800
(2,1,0.0.0.0)	180	180	(4,3,0.0.0.0)	190133107920	120618725480
(0.2.0.0.0.0)	6	6	(4, 1,0.1.0.0)	983676960	726939360
-4-			(4.0.2,0.0.0)	2049523560	1352022840
(5.0.0.0.0.0)	79056	82944	(3.2, 1.0,0.0)	16202592000	7657040160
(3.1.0.0.0.0)	12960	12096	(3,1,0.0.1,0)	2268000	2268000
(1,2.0.0.0.0)	720	576	($3,0,1.1 .0 .0$)	60383232	40515552
-5-			(2,4,0.0.0.0)	9579283560	4551377040
(6.0.0.0.0.0)	2040120	2347920	(2,2,0.1,0.0)	185499720	89903520
(4.1 .0 .0 .0 .0)	646920	594000	(2,1,2.0.0.0)	449175888	136615248
(3.0,1.0.0.0)	3600	3600	(2.0,1.0,1.0)	151200	151200
(2, 2,0.0.0.0)	64350	48870	(2.0.0.2.0.0)	459918	323838
(1.1.1.0.0.0)	900	900	(1.3.1.0.0.0)	563855040	207612720
(0.3.0.0.0.0)	360	0	(1, 2.0.0.1.0)	378000	378000
(0.0.2.0.0.0)	6	6	($1,1,1,1.0 .0$)	8269128	2689848
-6-			(1,0,3.0.0.0)	2721600	0
(7.0.0.0.0.0)	57166560	74766240	(1.0.0.1, 1.0)	2700	2700
(5, 1,0.0.0.0)	28434240	27384480	(0.5.0.0.0.0)	54416880	0
(4.0.1.0.0.0)	371520	336960	(0,3.0.1.0.0)	2721600	0
(3.2.0.0.0.0)	4807080	3659040	(0.2,2.0.0.0)	7570584	2936304
(2.1.1.0.0.0)	140400	108000	(0,1,1.0,1.0)	12600	12600
(1,3.0.0.0.0 \}	120960	51840	(0.1,0.2,0.0)	15120	0
(1.0.2.0.0.0)	1224	864	(0,0,2, 1,0.0)	37800	0
(0,2, 1, 0.0 .0)	2880	1440	$\binom{0,0,0.0,2.0}{-10}$	6	6
8,0.0.0.0.0)	1745418780	2655431100	(11,0.0.0.0.0)	80286927840000	211145941036800
6,1.0,0.0.0)	1200633840	1280059200	(9.1.0.0.0.0)	103342551278400	176930203564800
5.0.1.0.0.0)	24433920	21833280	(8,0.1.0.0.0)	3264180897600	4373643859200
4.2.0.0.0.0	314976060	246996540	(7.2.0.0.0.0)	59730344200800	67476683232000
4,0.0.1.0.0;	75600	75600	(7.0.0.1,0.0)	45464328000	45031593600
3.1 .1 .0 .0 .0)	13958280	10117800	(6.1,1.0.0.0)	5244792638400	4398829545600
2,3.0.0.0.0	18632880	9802800	(6.0.0.0, 1.0)	179625600	179625600
2,1.0.1.0.0	50400	50400	(5.3,0.0.0.0 ${ }^{5}$)	15682621248000	10926042825600
2.0.2.0.0.0	194964	139524	(5.1.0.1.0.0)	81496951200	64207987200
1.2.1.0.0.0	803040 1680	309120	(5.0.2.0.0.0)	157331250720	112057706880
1.0.1.1.0.0)	1680	1680	(4, 2, 1.0,0,0)	1607942145600	871058966400
0.4,0,0.0.0)	149730	104370	(4, 1,0,0.1.0)	430012800	348364800
0.2.0.1.0.0)	2100	2100	(4,0,1,1.0.0)	6931643040	4414435200
0.1.2.0.0.0)	5040	0	(3,4,0.0.0.0)	1357936876800	684945525600
0.0.0.2.0.0)	6	6	(3,2.0,1.0.0)	26174080800	12381012000
-8-			(3.1.2.0.0.0)	65498963040	22269461760
9.0.0.0.0.0)	58015258560	104309130240	(3.0.1.0.1.0)	38344320	26853120
7.1.0,0.0.0)	50917507200	62575027200	(3.0.0.2.0.0)	78003000	47329920
6.0.1.0.0.0)	1338906240	1278789120	(2.3.1.0.0.0)	126014767200	46007438400
5.2.0.0.0.0)	18916269120	15951600000	(2,2,0.0.1,0)	132148800	80740800
5,0.0.1.0.0)	9434880	8709120	(2.1 .1 .1 .0 .0)	1868438880	628568640
4,1.1.0.0.0)	1118355840	818657280	(2,0.3,0.0.0)	558220320	69552000
3,3.0.0.0.0)	2069907840	1208511360	(2.0.0,1.1.0)	892080	557280
3.1.0.1.0.0)	9112320	7015680	($1.5 .0,0.0 .0$)	25250097600	5619536000
3.0.2.0.0.0)	22416576	14765184	(1,3,0.1,0.0)	1158040800	228009600
2.2,1,0.0.0	132216000	564488000	(1.2,2,0,0,0	3297026880	910012320
2,0,1,1,0.0	397824	274176	(1,1,1,0,1.0)	8356320	4173120
1,4,0,0.0.0)	49791840	23788800	(1.1.0.2.0.0)	9447840	2315520
1,2,0,1,0.0	920640	524160	(1.0.2,1.0,0)	22367520	2116800
1.1.2.0.0.0)	2222976	604800	(1.0.0.0.2.0)	2520	1440
(1,0.0.2.0.0)	1824	1152	(0.4.1.0.0.0)	1032292800	242524800
(0.3.1.0.0.0)	1357440	362880	(0,3,0,0,1,0)	3225600	1209600
(0.1.1.1.0.0)	18816	8064	(0.2,1,1.0.0)	36298080	5564160
(0.0.3.0.0.0)	6720	0	(0.1,3,0.0.0)	18355680	3326400
			(0.1.0.1.1.0)	46080	17280
			(0.0.2.0.1.0)	48384	18144
			(0.0.1.2.0.0)	110880	\bigcirc

P	BCC	FCC	p	BCC	FCC
-0-			-9-		
0.0.0.0.0.0)	0	0	(10.0.0.0.0.0)	97203332016000	4987066700064960
-1-			(8.1,0.0.0.0)	52628686346880	2170696355432640
(2.0.0.0.0.0)	8	12	7.0.1.0.0.0)	954788446080	31402121808960
0^{-2-}			(6.2.0.0.0.0)	11863433564640	380181901987440
(3.0.0.0.0.0)	256	576	(6.0.0.1.0.0)	6885648000	170464694400
$4.00^{-3} 0.0$			(5.1.1.0.0.0)	503671089600 12700900	11836307075040 179625600
4.0.0.0.0.0	8136 336	28620	(5.0.0.0.1.0 4)	12700800 973073183040	179625600 2508749315850
2,1.0.0.0.0	336	792	(4,3.0.0.0.0 4 ,	973073183040 4386312000	25087493158560
0.2.0.0.0.0)	8	12	$\binom{4.1 .0 .1,0.0}{4.02000}$	4386312000 7433002080	68369767200 $\dagger 14651981360$
5.0.0.0.0.0)	291840	1601856	$\binom{4,0,2,0,0.0}{3,2,1,0.0,0}$	7433002080 43856789760	114651981360 914319342720
3.1.0.0.0.0)	30720	120960	(3,1,0.0.1,0)	10584000	74844000
1.2.0.0.0.0)	1024	2880	(3,0, 1, 1,0.0)	154808640	1412818848
-5-			(2.4,0.0.0.0)	26173183680	503109986400
6.0.0.0.0.0	11847360	101688480	(2,2,0.1,0.0)	349322400	4512458160
4.1.0.0.0.0)	2155680	13878000	(2,1,2.0.0.0)	533937600	10226194272
$3.0 .1 .0 .0 .0)$	10080	39600	(2.0.1.0.1.0)	423360	1663200
2.2.0.0.0.0)	124200	573660	(2,0.0.2,0.0)	842760	4280364
1.1.1.0.0.0)	1680	3960	($1.3,1.0 .0 .0$)	871799040	13154218560
0.3.0.0.0.0)	0	1440	(1.2.0.0.1.0)	1058400	4158000
0.0.2.0.0.0)	8	12	($1.1,1.1,0.0$)	7086240	77387184
-6-			(1.0.3.0.0.0)	0	26006400
7.0.0.0.0.0)	542056320	7274422080	(1.0.0.1.1.0)	5040	11880
5.1.0.0.0.0 $)$	144708480	1494987840	(0,5,0.0.0.0)	0	1208208960
4.0.1.0.0.0)	1313280	9417600	(0.3.0.1,0.0)	0	26006400
3.2,0.0.0.0)	13307520	100694886	(0.2,2.0.0.0)	8668800	76289472
2.1.1.0.0.0	276480	1339200	(0.1,1.0.1.0)	23520	55440
1,3.0.0.0.0)	136320	1097280	(0.1.0.2.0.0	0	60480
1.0.2.0.0.0)	1536	4896	(0.0.2.1.0.0)	0	151200
$0.2,1,0.0 .0)$	2560	11520	$\binom{0.0,0.0 .2 .0}{-10}$	8	12
8.0,0.0.0.0)	27689553360	581135060520	(11.0.0.0.0.0)	6576908186419200	527505045793689600
6.1.0.0.0.0)	9861546240	162388074240	(9.1.0.0.0.0)	4183098750028800	271946632765248000
5.0.1.0.0.0)	126080640	1543268160	(8.0, 1.0.0.0)	83731439232000	4431158495769600
4.2.0.0.0.0	1311379440	16187252760	(7.2,0.0.0.0)	1145876738227200	58638977446089600
4.0.0.1.0.0 ?	352800	2494800	(7,0.0,1,0.0)	731195942400	30807586656000
$3.1,1.0 .0 .0)$	38004960	317162160	(6,1,1,0,0,0)	54405867801600	2099704961491200
2.3.0.0.0.0)	37242240	398603520	(6.0.0.0.1,0)	2467584000	72503424000
2.1.0.1.0.0)	141120	554400	(5.3.0.0.0.0)	130711362163200	5369689921478400
2.0.2.0.0.0)	359856	1779960	(5,1.0.1.0,0)	588569587200	16018956576000
1.2,1.0.0.0)	806400	7371840	(5.0.2.0.0.0)	920602851840	24091235602560
1.0,1,1,0,0)	3136	7392	(4.2,1.0.0.0)	7408964505600	242584746566400
0.4,0.0.0.0)	294840	1378020	(4.1,0.0.1.0)	2370816000	39354336000
0.2.0.1.0.0)	3920	9240	(4.0.1.1.0.0)	24952757760	415164476160
0.1.2.0.0.0)	0	20160	(3,4,0.0.0.0)	5712234998400	180774607809600
0.0,0,2.0.0)	8	12	(3,2,0.1.0.0)	72602812800	1654278292800
-8-			(3.1.2.0.0.0)	129615897600	3672740171520
9.0.0.0.0.0)	1565864294400	51382077062400	(3.0.1.0.1.0)	106444800	1029369600
7.1.0.0.0.0)	701510906880	18310805775360	(3,0.0.2,0.0)	176302080	1772292960
6.0.1.0.0.0)	11075097600	223892121600	(2, 3, 1,0,0.0)	278141472000	7156095811200
5.2 .0 .0 .0 .7)	124944422400	2493026968320	(2,2,0,0,1,0)	326592000	3662064000
5.0.0.1.0.0	58060800	805593600	($2.1,1.1 .0 .0$)	2434440960	44988652800
4, 1, 1,0.0.0)	4525086720	63975098880	(2,0.3.0.0.0)	276917760	14543827200
3,3.0.0.0.0)	6627264000	107935188480	(2.0.0.1,1.0)	1428480	8596800
3.1.0.1.0.0)	27740160	241113600	($1,5,0,0,0.0$)	41012697600	1373651395200
3,0.2,0.0.0)	54602240	492608256	(1,3,0.1.0.0)	972518400	28544140800
2.2,1.0.0.0)	216903680	2953870080	(1.2,2.0.0.0)	3945244800	82117224000
2.0.1.1.0.0)	702464	3816960	(1, 1, 1,0,1.0)	10859520	82051200
1.4.0.0.0.0)	95083520	1075885440	($1,1,0,2,0,0$)	5957360	89320320
1.2.0.1.0.0)	1361920	9004800	(1.0.2.1.0.0)	5523840	196459200
1.1.2.0.0.0)	1573376	20697600	(1.0.0.0.2.0)	2560	10080
1.0.0.2.0.0)	2048	7296	(0.4.1.0,0.0)	1116595200	24792163200
0.3,1.0.0.0)	1039360	13171200	(0.3.0.0.1.0)	3225600	32256000
0.1.1.1.0.0)	14336	75264	(0.2.1.1.0.0)	15482880	364976640
0.0.3.0.0.0)	0	26880	(0.1.3,0.0.0)	10321920	208051200
			(0.1.0.1.1.0)	30720	184320
			(0.0.2,0,1.0)	32256	193536
			(0.0.1.2.0.0)	0	443520

P	HSC	HBCC	p	HSC	HBCC
-0-			-9-		
(0.0.0.0.0.0)	0	0	(10.0,0,0.0.0)	108737731912320	111452928594981120
-1-			(8.1.0.0.0.0)	53292210249600	26940300054071040
(2,0.0.0.0.0)	8	16	(7.0.1.0.0.0)	918704384640	241048944057600
-2-			(6,2.0.0.0.0)	11110002331680	2581453465899840
(3,0.0.0.0.0)	256	1024	(5.0 .0 .1 .0 .0)	6689697800	-917419426560
$\left\{4.00^{-3} 0.0 .0\right\}$			(5,1.1.0.0.0)	464611775040	50146107177600
$\left\{\begin{array}{l}4.0 .0 .0 .0 .0 \\ 2,1.0 .0 .0\end{array}\right\}$	8136 336	59284	$\{5.0 .0 .0 .1 .0\}$	12700800	990882400
$\binom{2,1.0 .0 .0 .0}{0.2,0.0 .0 .0}$	336 8	1440 16	$\left(\begin{array}{l}4.3 .0 .0 .0 .0 \\ 4.1 .0 .1 .0 .0)\end{array}\right.$	862386436800 4186002240	90867064982400 214463168640
-2.0.4-			4.0.2.0.0.0)	6867211680	316281268800
5,0.0.0.0.0	291840	5443584	3.2,1.0.0.0)	38510357760	1868211878400
(3,1.0.0.0.0)	30720	270336	(3.1.0.0.1,0)	10584000	275184000
(1.2.0.0.0.0)	1024	4096	(3.0,1,1.0.0)	148034880	3070505088
0^{-5}			2.4.0.0.0.0)	21526081920	1051809937920
6.0.0.0.0.0	11959680	493785600	(2.2,0.1.0.0)	327791520	6932681280
4.1.0.0.0.0)	2126880	41290560	(2,1,2.0.0.0)	47648:600	10168083072
$3.0 .1 .0 .0 .0)$	10080	100800	(2.0, 1,0.1.0)	423360	4233600
(2.2.0.0.0.0 ${ }^{2} 1.100$	121320	1072080	(2.0.0.2.0.0)	818558	7453952
$\left\{\begin{array}{l}1.1 .1 .0 .0 .0 \\ 0.30 .0 .0\end{array}\right\}$	1680	7200	(1,3.1.0.0.0)	694350720	1625420:800
$\left(\begin{array}{l}0.3 \cdot 0.0 .0 .0 \\ 0.0 .2,0.0 .0\end{array}\right\}$	0	0	(1,2,0.0.1.0)	1058400	10584000
(0.0.2,0.0.0)	8	16	(1,1,1.1.0.0	6699169	61975872
7.0.0.0.0.0)			(1,0,3,0.0.0)	0	0
$\left.\begin{array}{l}\text { 7.0.0.0.0.0 } \\ 5.1 .0 .0 .0 .0\end{array}\right)$	556882560	51154018560	(1.0.0.1,7.0)	50\%	21600
$\left.\begin{array}{l}\text { 5.1.0.0.0.0 } \\ 4.0 .1: 0.0 .0\end{array}\right)$	141356160	6175238400	(0.5.0.0.0.0)	0	0
$\left.\begin{array}{l}4.0 .1: 0.0 .0 \\ 3.0000\end{array}\right\}$	1313280	27740160	(0.3.0.1.0.0)	0	0
3,2,0,0.0.0)	12812160	248620800	(0.2.2.0.0.0)	6842304	7337433E
2.1.1,0.0.0)	276480	2457600	(0.1.1.0.1.0)	23520	100800
$1.3 .0,0.0 .0)$ 10.00 .00	124800	1140480	(0.1.0.2.0.0)	0	0
$1.0 .2 .0 .0 .0)$ $0.2,9.0 .0 .0)$	1536	6144	(0.0.2.1.0.0)	0	0
0.2.1.0.0.0)	2560	10240	(0.0.0.0,2.0)	a	16
(8.0.0.0.0.0)	29135176560	5970478116960	(11,0.0.0.0.0)	7624481289062400	175046381272433 ¢66400
(6.1,0.0.0.0 5	9659180160	954131270400	(9,1.0.0.0.0)	4348369804262400	4969285253494732800
(5.0, 1.0.0.0)	123177600	5990826240	8.0.1.0.0.0)	81568674432000	49436286633216000
(4.2.0.0.0.0)	1241474640	54682551840	7.2.0.0.0.0)	1084176709056000	578349978875827200
$\left.\begin{array}{l}4.0,0.1,0.0 \\ 3.1,1,0.0 .0\end{array}\right)$	352800	9172800	7.0.0.1.0.0)	697738406400	230941578470400
$\binom{3.1,1.0 .0 .0}{2.3,0.0 .0 .0}$	36613920	742728000	6.1.1.0.0.0)	49643212953600	12564439411507200
(2.3,0.0.0.0 2)	33855360	696433920	6.0.0.0.1.0)	2467584000	433249689600
(2.1,0.1,0.0 2.0	141120	1411200	5.3.0.0.0.0)	1148074058888000	27990850082227200
2.0.2.0.0.0)	349776	3151904	$5.1 .0 .1 .0 .0)$	546838387200	66205206144000
(1,2,1,0.0.0)	766080	6997760	5.0.2.0.0.0)	830215249320	89300665681920
$\left.\begin{array}{l}1.0 .1 .1 .0 .0 \\ 0.40000\end{array}\right\}$	3136	13640	(4.2.1.0.0.0)	63738855270400	7154684592:2800
0.4.0.0.0.0)	244440	2473520	(4.1.0.0.1.0)	2370816000	137371852800
0.2.0.1.0.0)	3920	16800	(4.0.1.1.0.0)	23322216960	1106883671040
0.1.2,0.0.0)	0	0	(3,4,0.0.0.0)	4691614435200	517073339462400
0.0.0.2.0.0)	8	16	(3,2,0.1.0.0)	65167401600	3236910163200
-8-			(3, 1, 2,0.0.0)	110759362560	5466210140160
9.0.0.0.0.0)	1695560509440	776603874816000	(3.0,1,0.1.0)	106444800	2294046720
7,1.0,0.0.0	695923522560	155539733207040	(3.0.0.2,0.0)	169528320	3384990720
6.0,1.0.0.0	10651253760	1203691345920	(2.3,1.0.0.0)	220921747200	11490110553600
5,2,0,0.0.0)	116975577600	11820578595840	(2.2.0.0.1.0)	326592000	7202764800
5.0.0.1.0.0)	58060800	\$287531520	(2.1,1.0.0)	2205262080	46130434560
4,1,1,0,0.0)	4260587520	196914278400	(2.0,3,0.0.0)	239823360	5965798400
3.3.0.0.0.0)	5953436160	273032419200	$\{2.0 .0,1,1.0\}$	1428480	12718080
$3.1 .0 .1 .0 .0)$	27740160	596090880	(1.3.0.0.0.0)	29595696400	1604202163200
3.0.2.0.0.0)	52344320	1036442624	(1,3,0.1.0.0	782208000	18350438400
2,2,1.0.0.0	196259840	4066979840	(1.2,2.0.0,0	2987483520	71995365120
2.0.1.1.0.0)	702464	6250496	(1,1,1.0.1.0)	10859520	98488320
1.4.0.0.0.0)	78955520	1721108480	(1.1,0.2.0.0)	5644800	50365440
1,2.0.1.0.0)	1361920	12328960	(1,0.2.1.0.0)	5120640	46368000
1.1.2.0.0.0)	1465856	13224960	(1.0,0.0.2.0)	2560	10240
1.0.0.2.0.0)	2048	8192	(0.4,1,0.0.0)	790809600	20423424000
0.3.1.0.0.0)	824320	8386560	(0,3.0.0.1.0)	3225600	30105600
0.1,1,1.0.0)	14336	57344	(0,2.1, 1.0.0)	12902400	126443520
0.0.3.0.0.0)	0	0	(0.1,3,0.0.0)	7096320	80640000
			(0.1.0.1.1.0)	30720	$1228{ }^{1} 0$
			(0.0.2.0.1.0)	32256	129024
			(0,0,1.2.0.0)	\bigcirc	

ACKNOWLEDGMENTS

We are grateful to J. D. Bessis, E. Brézin, M. E. Fisher, J. L. Gammel, J. Glimm, A. Jaffe, L. Kadanoff, N. Khuri, B. McCoy, B. G. Nickel, and J. Stevenson for helpful conversations, and to L. W. Fullerton for assistance with the many altran-related problems we encountered. One of us (JMK) is pleased to acknowledge the hospitality that the Statistical Physics and Materials Theory Group at LASL extended to him while much of this work was in progress.

REFERENCES

1. B. Widom, J. Chem. Phys. 43:3892, 3898 (1965); L. P. Kadanoff, Physics 2:263 (1966).
2. M. E. Fisher, Rep. Prog. Phys. 30:615 (1967).
3. G. Stell, in Proceedings of the International School of Physics "Enrico Fermi," Critical Phenomena, Course LI, M. S. Green, ed. (Academic, New York, 1971), p. 188, and references therein. See also G. Stell, Phys. Rev. B 5:981 (1972).
4. M. E. Fisher, in Proceedings of the Twenty-Fourth Nobel Symposium on Collective Properties of Physical Systems, Aspenäsgården, Sweden, 1973, B. Lundquist and S. Lundquist, eds. (Academic, New York, 1973), p. 16.
5. L. P. Kadanoff, in Proceedings of the International School of Physics "Enrico Fermi," Critical Phenomena, Course LI, M. S. Green, ed. (Academic, New York, 1971), p. 100; L. P. Kadanoff, in Phase Transitions and Critical Phenomena, C. Domb and M. S. Green, eds. (Academic, New York, 1976), Vol. 5A, p. 1.
6. C. Domb, in Phase Transitions and Critical Phenomena, C. Domb and M. S. Green, eds. (Academic, New York, 1974), Vol. 3, p. 357.
7. L. P. Kadanoff, Phys. Rev. 188:859 (1969).
8. J. Stephenson, J. Math. Phys. 5:1009 (1964).
9. B. M. McCoy and T. T. Wu, The Two-dimensional Ising Model (Harvard University Press, Cambridge, Massachusetts, 1973), pp. 186-199.
10. B. M. McCoy, C. A. Tracy, and T. T. Wu, Phys. Rev. Lett. 38:793 (1977); B. M. McCoy and T. T. Wu, Phys. Rev. D 18:1243, 1253, 1259 (1978); Scientia Sinica XXII: 1021 (1979).
11. G. A. Baker, Jr., Phys. Rev. B 15:1552 (1977).
12. D. S. Gaunt and M. F. Sykes, J. Phys. A 12:L25 (1979); D. S. Gaunt, M. F. Sykes, and S. McKenzie, J. Phys. A 12:A871 (1979).
13. B. G. Nickel and B. Sharpe, J. Phys. A 12:1819 (1979).
14. J. J. Rehr, J. Phys. A 12:L179 (1979); J. Zinn-Justin, J. Phys. (Paris) 40:969 (1979); S. McKenzie, J. Phys. A 12:L185 (1979); J. W. Essam and M. E. Fisher, J. Chem. Phys. 38:802 (1963).
15. P. C. Hohenberg, in Microscopic Structure and Dynamics of Liquids, J. Dupuy and A. J. Dianoux, eds. (Plenum, New York, 1979).
16. J. V. Sengers and J. M. H. Levelt Sengers, in Progress in Liquid Physics, C. A. Croxton, ed. (Wiley, Chichester, U.K., 1978), p. 103.
17. R. B. Griffiths, Phys. Rev. Lett. $24: 715$ (1970); J. M. Kincaid and E. G. D. Cohen, Phys. Rep. 22C:57 (1975).
18. K. G. Wilson and J. Kogut, Phys. Rep. 12C:75 (1974).
19. E. Brezin, J. C. LeGuillou, and J. Zinn-Justin, in Phase Transitions and Critical Phenomena, C. Domb and M. S. Green, eds. (Academic, New York, 1976), Vol. 6, p. 127.
20. K. Symanzik, J. Math. Phys. 7:510 (1966).
21. G. A. Baker, Jr., J. Math. Phys. 16:1324 (1975).
22. M. A. Moore, Lett. Nuovo Cimento 3:275 (1972); C. DiCastro, Rev. Nuovo Cimento 1:199 (1971).
23. K. Symanzik, in Local Quantum Field Theory, R. Jost, ed. (Academic, New York, 1969), p. 152.
24. J. D. Bjorken and S. D. Drell, Relativistic Quantum Fields (McGraw-Hill, New York, 1965).
25. N. N. Bogolubov and D. V. Shirkov, Introduction to the Theory of Quantized Fields (Interscience, New York, 1959).
26. T. H. Berlin and M. Kac, Phys. Rev. 86:821 (1952).
27. G. Caginalp, The ϕ^{4} Lattice Field Theory as an Asymptotic Expansion about the Ising Limit, The Rockefeller University, preprint (1979); F. Constantinescu, Phys. Rev. Lett. 43:1632 (1979); C. M. Bender, F. Cooper, G. S. Garalnik, and D. Sharp, Phys. Rev. D 19:865 (1979).
28. J. Glimm and A. Jaffe, The Coupling Constant in a ϕ^{4} Field Theory, The Rockefeller University, preprint (1979).
29. W. Ford and G. E. Uhlenbeck, in Studies in Statistical Mechanics, J. de Boer, ed. (North-Holland, Amsterdam, 1962), Vol. 1, p. 119.
30. R. Schrader, Phys. Rev. B 14:172 (1976); G. A. Baker, Jr., and S. Krinsky, J. Math. Phys. 18:590 (1977).
31. R. Schrader, Commun. Math. Phys. 49:131 (1976); 50:97 (1976); Ann. Inst. Henri Poincaré 26:295 (1977); R. Schrader and E. Tränkle, A Possible Constructive Approach to ϕ_{4}^{4} IV, Free University of Berlin, preprint (1980).
32. G. A. Baker, Jr., B. G. Nickel, M. S. Green, and D. Meiron, Phys. Rev. Lett. 36: 1351 (1976); G. A. Baker, Jr., B. G. Nickel, and D. Meiron, Phys. Rev. B 17:1365 (1978).
33. J. C. LeGuillou and J. Zinn-Justin, Phys. Rev. Lett. $39: 95$ (1977).
34. M. Wortis, in Phase Transitions and Critical Phenomena, C. Domb and M. S. Green, eds. (Academic, New York, 1974), Vol. 3, p. 114.
35. J. P. Van Dyke and W. J. Camp, Phys. Rev. Lett. $35: 323$ (1975); J. P. Van Dyke and W. J. Camp, in Magnetism and Magnetic Materials-1973 G. D. Graham, Jr., and J. J. Rhyne, eds., AIP Conference Proceedings No. 18 (American Institute of Physics, New York, 1974), p. 878.
36. A. D. Hall, Commun. ACM $14: 517$ (1971).
37. G. A. Baker, Jr., H. E. Gilbert, J. Eve, and G. S. Rushbrooke, Brookhaven National Laboratory Report No. BNL 50053 (1967).
38. M. F. Sykes, private communication.
39. C. Domb and B. R. Heap, Proc. Phys. Soc. 90:985 (1967).
40. J. M. Kincaid, G. A. Baker, Jr., and L. W. Fullerton, Los Alamos Scientific Laboratory Report No. LA-UR-79-1575 (1979).
41. C. Domb, Adv. Phys. 9:149, 245 (1960).
42. M. A. Moore, Phys. Rev. Lett. 23:861 (1969).
43. J. W. Essam and D. L. Hunter, J. Phys. C 1:392 (1968), and private communication.
44. R. K. Wehner and D. Baeriswyl, Physica 81A:129 (1975).
45. D. L. Hunter and G. A. Baker, Jr., Phys. Rev. B 7:3346 (1973).
46. G. A. Baker, Jr. and D. L. Hunter, Phys. Rev. B 7:3377 (1973).
47. D. L. Hunter and G. A. Baker, Jr., Phys. Rev. B 19:3808 (1979).
48. A. J. Guttman and G. S. Joyce, J. Phys. A 5:281 (1974); J. L. Gammel, in Padé Approximants and Their Applications, P. R. Graves-Morris, ed. (Academic, London, 1973); M. E. Fisher and H. Au-Yang, J. Phys. A 12:1677 (1979).
49. J. Glimm and A. Jaffe, Acta Phys. Austriaca Suppl. 16:147 (1976).
50. D. Isaacson, Commun. Pure Appl. Math. 29:531 (1976).
51. D. Marchesin, Ph.D. thesis, New York University (1975).
52. C. M. Bender, F. Cooper, G. S. Guralnik, R. Roskies, and D. Sharp, in Proceedings of Orbis Scientiae 80, A. Perlmutter, ed. (1980), to be published.
53. J. P. Eckman, J. Magnen, and R. Sénéor, Commun. Math. Phys. 39:251 (1975); J. Dimock, Commun. Math. Phys. 35:347 (1974); J. Glimm, A. Jaffe, and T. Spencer, in Constructive Field Theory, G. Velo and A. Wightman, eds. (Springer, Berlin, 1973), p. 1.
54. J. M. H. Levelt Sengers, in Proceedings of the Seventh Symposium on Thermophysical Properties, A. Cezairliyan, ed. (American Society of Mechanical Engineers, New York, 1977), p. 766.
55. J. Feldman and K. Osterwalder, Ann. Phys. (N.Y.) 97:80 (1976); J. Magnen and R. Sénéor, Ann. Inst. Henri Poincaré, 24:95 (1976); J. Glimm and A. Jaffe, Fortschr. Phys. 21:327 (1973).
56. G. A. Baker, Jr., Phys. Rev. Lett. 34:268 (1975); O. McBryan and J. Rosen, Commun. Math. Phys. 51:97 (1976).

[^0]: Work supported in part by the U.S. Department of Energy.
 ${ }^{1}$ Theoretical Division, Los Alamos Scientific Laboratory, University of California, Los Alamos, New Mexico.
 ${ }^{2}$ Thermophysics Division, National Bureau of Standards, Washington, D.C.

[^1]: ${ }^{3}$ We use the word "symmetries" loosely to denote the set of properties that defines a universality class. See Ref. 5.
 ${ }^{4}$ The critical exponents of the two-dimensional Ising model that appear in the hyperscaling relations have been calculated in numerous ways by many authors; for a survey see Refs. 2 and 6. The proof by Kadanoff ${ }^{(7)}$ depends on a hypothesis shown by Stephensen along diagonals, ${ }^{(8)}$ as explained by McCoy and Wu. ${ }^{(9)}$ For a discussion of the two-dimensional Ising model field theory see Ref. 10.
 ${ }^{5}$ See, for instance, model calculations on systems having tricritical and higher order critical points. ${ }^{(17)}$

[^2]: ${ }^{6}$ Reference 18, Sections 10 and 12, and Hohenberg (Ref. 15).

[^3]: ${ }^{7}$ The coefficient of K^{10} in Eq. (4.24) is not identical to that given by Moore. ${ }^{(42)}$

[^4]: ${ }^{9}$ See Refs. 13, 15, 16, and 54.

[^5]: ${ }^{10}$ Related monotonicity properties have been rigorously established. See, for example, Ref. 56.
 ${ }^{11}$ Baker et al. (1978), Ref. 32, report a value of 1.416 ± 0.0015 for v^{*}, where $v^{*}=9 g^{*} / 48 \pi$.

